Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Nuclear Engineering

Effects Of Vacancies And Electron Temperature On The Electron Phonon Coupling In Cubic Silicon Carbide And Their Connection To The Inelastic Thermal Spike, Salah Al-Smairat Jan 2022

Effects Of Vacancies And Electron Temperature On The Electron Phonon Coupling In Cubic Silicon Carbide And Their Connection To The Inelastic Thermal Spike, Salah Al-Smairat

Doctoral Dissertations

“The electron-phonon interaction is an important interaction in many solids as it influences transport phenomena and related quantities such as the electrical and thermal conductivities, especially in nuclear and space applications. The importance of the electron-phonon interaction in primary damage production in 3C-SiC is the subject of this research.

The electron-phonon coupling factor was calculated using a hybrid Density Functional Perturbation Theory - Classical Electron Gas model. The coupling factor was calculated as a function of electron temperature in pristine and defective 3C-SiC, and relaxed defective cells. The electron-phonon coupling is found to depend strongly on the electronic temperature and …


Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac Jan 2022

Particle Swarm Optimization For Critical Experiment Design, Cole Michael Kostelac

Masters Theses

“Critical experiments are used by nuclear data evaluators and criticality safety engineers to validate nuclear data and computational methods. Many of these experiments are designed to maximize the sensitivity to a certain nuclide-reaction pair in an energy range of interest. Traditionally, a parameter sweep is conducted over a set of experimental variables to find a configuration that is critical and maximally sensitive. As additional variables are added, the total number of configurations increases exponentially and quickly becomes prohibitively computationally expensive to calculate, especially using Monte Carlo methods.

This work presents the development of a particle swarm optimization algorithm to design …


Characterization Of Neutron Irradiated Accident Tolerant Nuclear Fuel Cladding Silicon Carbide & Radiation Detector Deadtime, Bader Almutairi Jan 2020

Characterization Of Neutron Irradiated Accident Tolerant Nuclear Fuel Cladding Silicon Carbide & Radiation Detector Deadtime, Bader Almutairi

Doctoral Dissertations

“In part I, the pulse shape characteristics generated by a Geiger Muller (GM) detector and recorded by an oscilloscope manually, were investigated. The objective of part I was (1) to find a correlation between pulse shape and the operating voltage; and (2) to assess if pulse shape properties followed distinct patterns comparable to detector deadtime findings reported by a previous study. It was observed that (1) there is a strong correlation between pulse shape and operating voltage, and (2) pulse shape falls in three distinct regions similar to detector deadtime. Furthermore, parts II and III are companions and share the …


Modification Of The Optical Response Of Alpha Quartz Via The Deposition Of Gold Nanoparticles In Etched Ion Tracks, Maria C. Garcia Toro Jan 2020

Modification Of The Optical Response Of Alpha Quartz Via The Deposition Of Gold Nanoparticles In Etched Ion Tracks, Maria C. Garcia Toro

Doctoral Dissertations

”This study addresses the experimental methods used to develop and characterize plasmonic devices capable of modifying the optical response of alpha quartz via the deposition of gold nanoparticles in etched ion tracks. In the first part of the research, the microstructural characterization of latent and etched ion tracks produced in alpha quartz (α-SiO2) is presented. Single crystals of α-SiO2 were irradiated with two highly energetic ions to different nominal fluences. As expected, the morphology of the resulting ion tracks depends on the energy of the incident ion and their stopping powers within the target material. Subsequent chemical …


Development Of A Switchable Radioisotope Generator, Kyle Mitchell Paaren Jan 2019

Development Of A Switchable Radioisotope Generator, Kyle Mitchell Paaren

Doctoral Dissertations

The Switchable Radioisotope Generator utilizes alpha-induced reactions to produce a combination of photons, neutrons, and protons with varying fluxes dependent on target materials and source geometry. The activity/strength of the secondary radiation is further controlled by manipulating the number of alpha particles that can interact with the target material(s). Analytical equations were solved to confirm secondary radiation production from target materials using average cross sections from TENDL data. TENDL and JENDL data was confirmed by analytically solving for the total alpha-induced cross sections. This information was used to produce the provisional and utility Patent No: US20190013109A1. TENDL data was then …


Correlation Between Delay Time And Measured Concentration And Concentration Uncertainty By Neutron Activation Analysis, James Thomas Seman Jan 2018

Correlation Between Delay Time And Measured Concentration And Concentration Uncertainty By Neutron Activation Analysis, James Thomas Seman

Doctoral Dissertations

"For the last several decades, it has been apparent that new methods of identifying explosives can help investigators trace their origins. One way to identify an explosive is through the use of taggants: materials added to a product that encodes information about the product such as when it was manufactured.

This research investigates the survivability of a new identification taggant called the Nuclear Barcode that overcomes some of the downfalls that have been identified in prior taggants. The Nuclear Barcode encodes information as a unique combination of concentrations of rare earths (Ho, Eu, Sm, Lu, and Dy) and precious metals …


Design And Characterization Of Multi-Spectral Underwater Beam-Port For Pool-Type Research Reactors, Meshari Mesfer Alqahtani Jan 2018

Design And Characterization Of Multi-Spectral Underwater Beam-Port For Pool-Type Research Reactors, Meshari Mesfer Alqahtani

Doctoral Dissertations

“The beam-port is a cardinal facility at research reactors necessary for dry irradiation, testing and measurement experiments. The Missouri University of Science and Technology Reactor (MSTR) is one such reactor with a beam-port. Installation of additional beam-port in such reactor facilities can be prohibitive. A novel remedy to this is an underwater beam-port for pool-type reactors. The design and characterization of a conceptual underwater multi-spectral beam-port for neutron and gamma fluxes were completed for the MSTR. The neutron spectra from the MSTR were simulated using the Monte Carlo N-particle (MCNP). The determined neutron spectra were experimentally validated using SAND-II. The …


Customized Multi-Group Cross Section Generation With Njoy For Discrete Ordinates Computed Tomography And Radiography Simulation, Steven Michael Wagstaff Jan 2018

Customized Multi-Group Cross Section Generation With Njoy For Discrete Ordinates Computed Tomography And Radiography Simulation, Steven Michael Wagstaff

Masters Theses

"The purpose of this work was to explore the creation of photoatomic multi-group cross section libraries to be used with a software package DOCTORS (Discrete Ordinates Computed TOmography and Radiography Simulator). This software solves the linear Boltzmann equation using the discrete ordinates method [1]. To create these libraries, NJOY2016 was used, creating both fine and broad energy multi-group cross section files. The cross section's accuracy was tested against an equivalent Monte Carlo simulation using MCNP6.

Two simulation geometries were used. The first, a cylindrical water phantom with a single source projection placed in front, simulating an X-ray radiography. The second …


Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals Jan 2018

Modulated Photothermal Radiometry: Detector Sensitivity Study And Experimental Setup, Jessica Nicole Seals

Masters Theses

"This thesis outlines the development of a system used for determining the surface thermal diffusivity of both non-irradiated and irradiated materials. The motivation for this work is to establish a modulated photothermal radiometry (PTR) system on the campus of Missouri University of Science and Technology. One of the main efforts described in this thesis is the design and construction of the physical apparatus. Along the way, it was necessary to perform a detailed sensitivity analysis of the system to determine whether the expected signal emitted from the sample falls within the bounds of detectivity for the HgCdTe (MCT) detector used …


A Study Of The Potential Applications Of Am241, And Determining The Feasibility Of Using Gamma Spectroscopy For Future Physical Validation, Eric A. Feissle Jan 2017

A Study Of The Potential Applications Of Am241, And Determining The Feasibility Of Using Gamma Spectroscopy For Future Physical Validation, Eric A. Feissle

Masters Theses

“Am241 is typically produced via Pu241 decay in a uranium fueled reactor. Presence of Am241 can be used as the age estimation tool for spent fuel, which is a focus of this thesis along with the interest of the measurement and the ratio of production rates of Am241’s activation products; Americium-242 and its first excited state of Americium-242m. MCNP models of the core and BEGe 3825 detector were built. These models were compared with established and physical measurements of gamma/x-ray standards that were available at the reactor. Thermal fluxes at 200 kW for potential foils centered in the source holder …


A Feasibility Study Of A Nuclear Power Plant With No Moving Parts, Jonathan Mark Schattke Jan 2016

A Feasibility Study Of A Nuclear Power Plant With No Moving Parts, Jonathan Mark Schattke

Masters Theses

"In a nuclear reactor design, every moving part in a system is considered a failure point. In this study, a proposal is made for designing a nuclear reactor that has no moving parts by coupling an accelerator driven core (removing control system moving parts) to a magnetohydrodynamic generator (removing power generation moving parts) using mercury coolant (removing pumping system moving parts). Further safety is realized by using a subcritical core, where the core is never able to sustain a chain reaction on its own, obviating many safety systems. The design is verified with a Monte Carlo simulation "--Abstract, page iii.


Attenuation Properties Of Cement Composites: Experimental Measurements And Monte Carlo Calculations, Raul Florez Jan 2016

Attenuation Properties Of Cement Composites: Experimental Measurements And Monte Carlo Calculations, Raul Florez

Masters Theses

"Developing new cement based materials with excellent mechanical and attenuation properties is critically important for both medical and nuclear power industries. Concrete continues to be the primary choice material for the shielding of gamma and neutron radiation in facilities such as nuclear reactors, nuclear waste repositories, spent nuclear fuel pools, heavy particle radiotherapy rooms, particles accelerators, among others. The purpose of this research was to manufacture cement pastes modified with magnetite and samarium oxide and evaluate the feasibility of utilizing them for shielding of gamma and neutron radiation. Two different experiments were conducted to accomplish these goals. In the first …


Nanometal Containing Nanocomposites And Photolithographic Polyaniline Nanofibers, Frank D. Blum, Sunil K. Pillalamarri, Lalani K. Werake, J. Greg Story, Massimo F. Bertino, Akira Tokuhiro Mar 2006

Nanometal Containing Nanocomposites And Photolithographic Polyaniline Nanofibers, Frank D. Blum, Sunil K. Pillalamarri, Lalani K. Werake, J. Greg Story, Massimo F. Bertino, Akira Tokuhiro

Chemistry Faculty Research & Creative Works

A report on recent progress from our laboratories on the nanostructures produced from novel synthesis techniques will be discussed. Using high-energy radiation (γ-rays) we have been able to produce conducting polymer nanofibers and nanorods of polyaniline and polypyrrole without the use of a separate template or capping agent. This technique has been extended, with the addition of metal ions, to a "one pot" synthesis, producing conducting nanocomposites. These nanocomposites contain metal nanoparticles which decorate the conducting nanofibers. We have also recently shown that these systems can be photopatterned to produce novel structures. We believe that these systems will be useful …


Niel Calculations For High-Energy Heavy Ions, John W. Wilson, I. Jun, M. A. Xapsos, E. A. Burke, F. F. Badavi, L. W. Townsend Dec 2004

Niel Calculations For High-Energy Heavy Ions, John W. Wilson, I. Jun, M. A. Xapsos, E. A. Burke, F. F. Badavi, L. W. Townsend

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

Calculations of NIEL are reported for heavy ions prominent in the space environment for energies ranging from 200 MeV per nucleon to 2 GeV per nucleon.


Laser Writing Of Semiconductor Nanoparticles And Quantum Dots, Massimo F. Bertino, Raghuveer Reddy Gadipalli, J. Greg Story, C. G. Williams, Guo-Hui Zhang, Chariklia Sotiriou-Leventis, Akira Tokuhiro, Suchi Guha, Nicholas Leventis Jan 2004

Laser Writing Of Semiconductor Nanoparticles And Quantum Dots, Massimo F. Bertino, Raghuveer Reddy Gadipalli, J. Greg Story, C. G. Williams, Guo-Hui Zhang, Chariklia Sotiriou-Leventis, Akira Tokuhiro, Suchi Guha, Nicholas Leventis

Physics Faculty Research & Creative Works

Silica aerogels were patterned with CdS using a photolithographic technique based on local heating with infrared (IR) light. The solvent of silica hydrogels was exchanged with an aqueous solution of the precursors CdNO3 and NH4 OH, all precooled to a temperature of 5°C. Half of the bathing solution was then replaced by a thiourea solution. After thiourea diffused into the hydrogels, the samples were exposed to a focused IR beam from a continuous wave, Nd-YAG laser. The precursors reacted in the spots heated by the IR beam to form CdS nanoparticles. We lithographed features with a diameter of …


Radiation Resistance Testing Of Mosfet And Cmos As A Means Of Risk Management, Akira Tokuhiro, Massimo F. Bertino Jan 2002

Radiation Resistance Testing Of Mosfet And Cmos As A Means Of Risk Management, Akira Tokuhiro, Massimo F. Bertino

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

Whether for military, research (space, accelerator physics) and/or civilian use, risk avoidance against radiation-induced damage is not possible with COTS parts. Thus the sensible approach is risk management. We recommend a sensible risk management approach as follows: 1) know the radiation environment of the intended application to the extent possible; 2) know the effects of ionizing radiation on the component(s) of interest; 3) know the requirements of the application; 4) identify the candidate or chosen components; 5) test the components; 6) design-in safety factor margins to the extent possible.