Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 32

Full-Text Articles in Nuclear Engineering

Characterizing The Structure And Radiation Resistance Of Weberite-Type Complex Oxides, Igor M. Gussev Dec 2023

Characterizing The Structure And Radiation Resistance Of Weberite-Type Complex Oxides, Igor M. Gussev

Doctoral Dissertations

Weberite-type A3BO7 oxides, where A is a trivalent rare earth and B is a pentavalent element like Ta, have been a focus of research due to the discovery of the weberite-type local atomic arrangement in ceramics with a defect-fluorite structure. Earlier studies primarily examined their long-range structures, leaving gaps in understanding their short-range atomic behavior. This thesis investigates various weberite-type tantalates across all structural scales. There has been debate over the long-range structure of Y3TaO7, a medium-sized rare earth tantalate oxide, particularly regarding its spacegroup symmetry. This work identifies Y3TaO7 …


Development Of Metal Halide Perovskites For Radiation Detection, Ryan Tan Aug 2022

Development Of Metal Halide Perovskites For Radiation Detection, Ryan Tan

Doctoral Dissertations

Metal halide perovskite (MHP) semiconductors have attracted significant interest in recent years within photovoltaic and radiation detection communities due to their inexpensive solution growths, high effective atomic number for gamma and X-ray sensing, suitable bandgap, large resistivity, and moderate mobility-lifetime products. The MHP stoichiometry can also be tuned as needed to achieve desired physical and electronic properties. Moreover, the hybrid or organometallic halide perovskite (OMHP) variants contain a large atomic fraction of hydrogen for fast neutron sensing. These qualities make MHPs an attractive low-cost option for meeting detector needs within nuclear security and imaging applications. This work presents the development …


Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan May 2022

Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan

Doctoral Dissertations

Nuclear energy technology can be exponentially advanced using advanced manufacturing, which can drastically transform how materials, structures, and designs can be built. Ultrasonic Additive Manufacturing (UAM) represents one of the four main additive manufacturing methods, although it is also the newest. As UAM technology and applications develop, a fundamental understanding of the bonding mechanism is crucial to fully realize its potential. Currently UAM bonding is considered to occur through breaking down surface asperities and removing surface oxides. Plastic deformation occurs although its role is currently unclear. This research analyzes material configurations in a variety of geometries, with similar and dissimilar …


Corrosion And Microstructural Characterization Of Molybdenum-Ysz Cermets Following Hydrogen Exposure Up To 2630 K, Taylor G. Duffin May 2022

Corrosion And Microstructural Characterization Of Molybdenum-Ysz Cermets Following Hydrogen Exposure Up To 2630 K, Taylor G. Duffin

Doctoral Dissertations

Ceramic-metallic (cermet) fuels are a promising fuel type for outer space nuclear thermal propulsion (NTP). A key feasibility issue is the hydrogen chemical compatibility of candidate fuels in the proposed extreme operating temperatures for NTP systems (> 2500 K). In this study, molybdenum matrix cermets containing 40–70 vol% yttria stabilized zirconia (YSZ) particles (as a surrogate for ceramic fuel particles) were produced via spark plasma sintering (SPS) and exposed to flowing hydrogen at high temperature (2000–2630 K). Both steady state and thermally cycled (4 cycles with intermediate cooling to room temperature) conditions were examined for a constant total hot testing …


Development Of Codoped Cesium Iodide Scintillators For Medical Imaging Applications, Everett M. Cavanaugh May 2022

Development Of Codoped Cesium Iodide Scintillators For Medical Imaging Applications, Everett M. Cavanaugh

Masters Theses

Cesium iodide has a rich history of use as a scintillating material. CsI finds use in a variety of fields, but it is primarily used in radiography, tomography, and geological exploration. Of the three common variants of CsI, thallium doped CsI is by far the most widely used among these applications. It possesses favorable physical characteristics like a high density and high effective Z and exhibits high light output at room temperature. Despite how great CsI scintillators may be on paper, they have an Achilles heel: afterglow. CsI:Tl has significant afterglow which leads to imaging artifacts that can be difficult …


Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals May 2022

Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals

Masters Theses

Anger camera imaging technology has become widely popular for neutron diffraction imaging due to recent shortages in Helium-3 (He-3). Research into neutron diffraction optimized Anger camera by the Oak Ridge National Laboratory (ORNL) detectors group has provided an alternative to He-3 Tube-based detectors with a high-resolution Anger camera. However, the cost of these high-resolution Anger camera technology can make it less attractive than He-3 tubes when a large Field of View (FOV) is desired. Currently, there is a need for a lower-cost alternative to this high-resolution anger camera. Further applications for Anger camera have become of interest with the advent …


Nuclear Fuel Materials Under Extremes: Redox Behavior And Resulting Defect Structure, William Cureton Dec 2021

Nuclear Fuel Materials Under Extremes: Redox Behavior And Resulting Defect Structure, William Cureton

Doctoral Dissertations

Oxide nuclear fuel materials and analogues are often subject to complex structural and chemical changes when exposed to extreme environments. For example, oxidation and buildup of fission products cause changes to the local- and long-range structure as well as the chemistry and stoichiometry of UO2 during operation in light water reactors. Highly ionizing energetic fission fragments have been shown to cause redox effects and associated defect structures in oxide nuclear fuel-type materials. The underlying mechanisms that lead to defect structures produced in a wider range of nuclear fuel material compositions and microstructures is not well understood.

This research project …


Fundamentals Of Cavity Formation In Α-Fe And Fe-Cr Alloys, Yan-Ru Lin Dec 2021

Fundamentals Of Cavity Formation In Α-Fe And Fe-Cr Alloys, Yan-Ru Lin

Doctoral Dissertations

Ferritic-martensitic steels are attractive candidate materials for fusion and advanced fission reactors primarily due to their low swelling characteristic, attractive thermo-mechanical properties, and the potential for development of nanostructured ferritic alloys. However, significant discrepancies exist regarding the effect of solutes and irradiation temperature on cavity swelling under ion versus neutron irradiation conditions. Several mechanisms have been proposed that may affect cavity swelling, but no general theory or model has received complete acceptance to explain these phenomena.

To better understand the formation of cavities in ferritic steels, we have performed multi-temperature (400-550°C) single-beam and simultaneous dual-beam irradiations (ex-situ and in-situ) on …


Radiation Effects On Lithium Indium Diselenide Semiconductors As Neutron Imaging Detectors, Robert M. Golduber Dec 2021

Radiation Effects On Lithium Indium Diselenide Semiconductors As Neutron Imaging Detectors, Robert M. Golduber

Masters Theses

The studies presented in this work aim to improve upon the knowledge base of lithium indium diselenide (LISe) semiconductors to understand how the material behaves in high radiation environments and refine the process of turning it into a neutron detector. LISe has great potential as neutron imaging detector because of the high neutron absorption efficiency of its enriched 6Li component and its ability to discriminate between gamma-rays and neutrons. Its ability to remain functional after being irradiated with large amounts of neutron fluence has been tested and the change in its electro-optical properties with relation to fluence has been …


Microstructural Investigation Of Hydride Reorientation In Zirconium Based Spent Nuclear Fuel Cladding, Tyler S. Smith May 2021

Microstructural Investigation Of Hydride Reorientation In Zirconium Based Spent Nuclear Fuel Cladding, Tyler S. Smith

Doctoral Dissertations

Hydride embrittlement and the impact of hydride reorientation are failure phenomena of particular interest during the transportation process of spent nuclear fuel from wet storage to dry storage. This process exposes the cladding to elevated temperatures and high pressure-induced hoop stresses that can release the hydride platelets back into solution and cause them to radially precipitate upon cooling. Though the impact of high temperature and high-pressure conditions on hydride reorientation have been investigated for many nonirradiated specimens, a data gap remains for the coupling effects of irradiation at these conditions in high burnup spent nuclear fuel rods. To simulate this …


Novel Fission Track Detection For Identification And Characterization Of Special Nuclear Materials, Jonathan Allen Gill Dec 2017

Novel Fission Track Detection For Identification And Characterization Of Special Nuclear Materials, Jonathan Allen Gill

Doctoral Dissertations

Fission track detection and analysis is used primarily in nuclear safeguards to identify special nuclear material. Identification of isotopic ratios is a crucial step in understanding the intended use of nuclear material and the nature of the materials production cycle. Unfortunately, this methodology uses etchable track detectors that require significant expertise and intensive labor to process.

This study developed a novel method using lithium fluoride (LiF) as a fluorescing nuclear track detector to conduct fission track analysis for isotopic prediction of uranium enrichment. Individual latent tracks produced by fission products were observed in LiF for the first time. These tracks …


Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle Dec 2017

Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle

Masters Theses

Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) …


The Development Of Cesium Calcium Bromo-Iodide Scintillator For X-Ray And Gamma Ray Detection, Matthew Starr Loyd Dec 2017

The Development Of Cesium Calcium Bromo-Iodide Scintillator For X-Ray And Gamma Ray Detection, Matthew Starr Loyd

Masters Theses

CsCaI3:Eu [cesium calcium iodide doped with europium] is a promising scintillator material that can be grown from the melt, but undergoes a tetragonal to orthorhombic phase transition upon cooling at 255 °C [degrees Celsius], causing twinning and cloudiness. The purpose of this work is to suppress this solid to solid phase transition in the CsCaI3:Eu scintillator, which has a light yield of ~40000 ph/Mev and energy resolution at 662keV of ~4%, by halide replacement to form the compound CsCaBrxI3-x:Eu [cesium calcium bromo-iodide doped with europium]. Crystals 8 cm3 [cubic centimeters] in …


Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt Dec 2016

Deterministic Neutron Transport And Multiphysics Experimental Safety Analyses At The High Flux Isotope Reactor, Christopher James Hurt

Doctoral Dissertations

The computational ability to accurately predict the conditions in an experiment under irradiation is a valuable tool in the operation of a research reactor whose scientific mission includes isotope production, materials irradiation, and neutron activation analysis. Understanding of different governing physics is required to ascertain satisfactory conditions within the experiment: the neutron transport behavior throughout the reactor and the coupled behavior of heat transfer, structural mechanics and fluid flow. Computational methods and tools were developed for robust numerical analysis of experiment behavior at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR), including fully-coupled thermo-mechanics in three plutonium-238 …


Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin Aug 2016

Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin

Doctoral Dissertations

With more than 500 compositions, materials possessing the pyrochlore structure have a myriad of technological applications and physical phenomena. Three of the most noteworthy properties are the structure’s ability to resist amorphization making it a possible host matrix for spent nuclear fuel, its exotic magnetic properties arising from geometric frustration, and fast ionic conductivity for solid-oxide fuel cell applications. This work focuses on these three aspects of the pyrochlore’s many potential uses. Structural characterization revealed that pyrochlore-type oxides have a tendency to disorder from a high symmetry cubic structure to a lower symmetry orthorhombic arrangement in response to a variety …


Thermal Characteristics Of Lithium Indium Diselenide And Lithium Indium Gallium Diselenide Neutron Detection Crystals, Dustin Carroll Giltnane May 2016

Thermal Characteristics Of Lithium Indium Diselenide And Lithium Indium Gallium Diselenide Neutron Detection Crystals, Dustin Carroll Giltnane

Masters Theses

Tracking special nuclear materials (SNM) has never been more important than in the 21st century where information is transferred rapidly around the globe. Tracking SNM is important to nuclear power, weapons, medicine, and science. Neutron and gamma ray detection are the primary methods of detecting SNM. Increased movement and availability of SNM have increased the demand for radiation detection systems beyond the capacity of traditional neutron detection technologies (3He) [Helium three]. Many alternative neutron detection materials are being considered, including 6LiInSe2 [Lithium Indium Diselenide grown with lithium enriched in lithium six] and its derivative 6 …


Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang May 2016

Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang

Masters Theses

Fe-based alloys are important structural materials for both fission and fusion energy. For fusion applications, the challenges of radiation-induced changes in microstructure, properties and performance is further challenged by the concomitant production of helium from (n, alpha) nuclear reactions and fusion reactions. Due to the lack of a volumetric, high flux 14-MeV neutron source, studying these phenomena require the use of computational materials modeling and novel experimental methods. In this thesis, molecular dynamics (MD) simulations was used to investigate the synergistic interactions of helium with prismatic dislocation loops characteristic of those observed in neutron irradiated iron to determine how the …


Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts May 2016

Magnetron Sputtering And Corrosion Of Ti-Al-C And Cr-Al-C Coatings For Zr-Alloy Nuclear Fuel Cladding, Devin Alan Roberts

Masters Theses

The disaster at the Fukushima Daiichi Nuclear Power Plant in March 2011 bought renewed focus to the issue of corrosion in nuclear fuel cladding applications. This thesis reports on the background behind these issues, the investigation strategy, and the analysis of experiments focused on mitigating oxidation of Zr-alloy fuel cladding. This thesis seeks to develop magnetron sputtered Ti-Al-C and Cr-Al-C coatings for Zr-alloy substrates and characterize the as-deposited and corroded samples.

Ti-Al-C and Cr-Al-C coatings were deposited onto ZIRLO, Si, and Al2O3 [Aluminum Oxide] substrates under various sputtering conditions. A combinatorial sputtering method was employed to refine …


Ion Irradiation-Induced Microstructural Change In Sic, Chien-Hung Chen Dec 2015

Ion Irradiation-Induced Microstructural Change In Sic, Chien-Hung Chen

Doctoral Dissertations

The high temperature radiation resistance of nuclear materials has become a key issue in developing future nuclear reactors. Because of its mechanical stability under high-energy neutron irradiation and high temperature, silicon carbide (SiC) has great potential as a structural material in advanced nuclear energy systems.

A newly developed nano-engineered (NE) 3C SiC with a nano-layered stacking fault (SFs) structure has been recently considered as a prospective choice due to enhanced point defect annihilation between layer-type structures, leading to outstanding radiation durability.

The objective of this project was to advance the understanding of gas bubble formation mechanisms under irradiation conditions in …


Kinetic And Thermodynamic Modeling Of Long Term Phase Stability In Alloy 800h Subjected To Lwr Core Conditions, Wayne Ethan Pratt Dec 2015

Kinetic And Thermodynamic Modeling Of Long Term Phase Stability In Alloy 800h Subjected To Lwr Core Conditions, Wayne Ethan Pratt

Masters Theses

An in depth literature review of Incoloy Alloy 800H was conducted and presented to summarize the current understanding of microstructural evolution under irradiation and secondary phase precipitate stability. Due to a lack of radiation induced segregation (RIS) data for Alloy 800H, Isopleth sections varying Cr, Ni, Ti, and Si were generated from a computational thermodynamics approach using ThermoCalc and analyzed to compensate for knowledge related to radiation induced precipitates (RIP’s). These isopleths were analyzed for a composition range based off previous knowledge of RIS tendencies in austenitic stainless steels. Analysis of four major binary phase diagrams and complex phase diagrams …


Ion Irradiation Characterization Studies Of Max Phase Ceramics, Daniel William Clark Dec 2015

Ion Irradiation Characterization Studies Of Max Phase Ceramics, Daniel William Clark

Masters Theses

The family of layered carbides and nitrides known as MAX phase ceramics combine many attractive properties of both ceramics and metals due to their nanolaminate crystal structure and are promising potential candidates for application in future nuclear reactors. This thesis reports on the background, design, and analysis of an experiment focused on determining the effects of energetic heavy ion irradiations on polycrystalline samples of titanium silicon carbide 312, titanium aluminum carbide 312, and titanium aluminum carbide 211. The irradiation conditions consisted of ion doses between 10 and 30 displacements per atom at temperatures of 400 and 700 degrees Celsius, conditions …


Ion Irradiation Induced Damage And Dynamic Recovery In Single Crystal Silicon Carbide And Strontium Titanate, Haizhou Xue Aug 2015

Ion Irradiation Induced Damage And Dynamic Recovery In Single Crystal Silicon Carbide And Strontium Titanate, Haizhou Xue

Doctoral Dissertations

The objective of this thesis work is to gain better understanding of ion-solid interaction in the energy regime where electronic and nuclear energy loss are comparable. Such responses of materials to ion irradiations are of fundamental importance for micro-electronics and nuclear applications. The ion irradiation induced modification for the crystal structure, the physical and chemical properties etc. may strongly affect the performance of functional materials that needs to be better understood.

Experimentally, ion irradiation induced damage accumulation and dynamic recovery in SiC [silicon carbide] and SrTiO3 [strontium titanate] were studied in this dissertation project. Five chapters are presented: Firstly, …


Disorder In Mg1-Xnixal2o4 Spinel And Its Impact On The Response To Swift Heavy Ion Irradiation, Brandon Alexander Perlov Aug 2015

Disorder In Mg1-Xnixal2o4 Spinel And Its Impact On The Response To Swift Heavy Ion Irradiation, Brandon Alexander Perlov

Masters Theses

Spinels, which are currently used in optical applications, have many proposed functions in the nuclear industry, such as a nuclear waste form due to its radiation resistance. Disordering plays a key role in the response of spinel to a wide range of irradiation conditions. The first part of this research project was on characterizing the type and degree of disorder that can be induced by chemical substitution in the magnesium nickel aluminate spinel solid solution series (Mg(1-x)Ni(x)Al2O4). Neutron total scattering has been used to characterize the structure at both the cation and anion sublattices. High-resolution pair distribution function analysis was …


Electronic Energy Loss Of Heavy Ions And Its Effects In Ceramics, Ke Jin May 2015

Electronic Energy Loss Of Heavy Ions And Its Effects In Ceramics, Ke Jin

Doctoral Dissertations

Energy loss of medium energy heavy ions (i.e. Cl, Br, I, and Au) in thin compound foils containing light elements (i.e. silicon carbide and silicon dioxide) is directly measured using a time-of-flight elastic recoil detection analysis (ToF-ERDA) technique. An improved data analysis procedure is proposed to provide the experimentally determined electronic stopping powers. This analysis procedure requires reliable predictions of nuclear stopping. Thus, the nuclear stopping predicted by the Stopping and Range of Ions in Matter (SRIM) code is validated by measuring the angular distribution of 1 MeV Au ions after penetrating a thin silicon nitride foil, using a secondary …


Molecular Dynamics Simulation Of Irradiation Damage In Multicomponent Alloys, Wei Guo May 2015

Molecular Dynamics Simulation Of Irradiation Damage In Multicomponent Alloys, Wei Guo

Doctoral Dissertations

The development of the generation IV reactors calls for radiation resistant materials. This thesis proposes that the newly developed single phase solid solution of high-entropy alloys (HEAs) can be such candidates. HEAs can undergo the crystalline to amorphous to crystalline (C-A-C) transitions under radiation. The radiation induced amorphous structure is a highly radiation resistant medium as shown by previous studies, and it further transforms to crystalline phases without much structural defects. In this thesis, by reviewing the formation rules of solid solutions and amorphous metallic glasses, it is suggested that the atomic size plays a key role affecting the C-A-C …


Impact Of Fuel Rod Coatings On Reactor Performance And Safety, Ian Robert Stewart May 2015

Impact Of Fuel Rod Coatings On Reactor Performance And Safety, Ian Robert Stewart

Masters Theses

This study evaluates the use of a ceramic coating on the Zr-alloy cladding within a PWR using four ceramic compounds of 5 and 10 micron thicknesses: ZrO2, TiAlN, Ti2AlC, and Ti3AlC2. The film’s impact is assessed for variation on: reactivity, fuel cycle length, maximum temperature, film’s roughness, and transient conditions. The reactivity is analyzed using the following methods: change in the multiplication factor (k) each film introduces to the system using the ABH method, and Monte Carlo software (MCNP). Both methods are in good agreement, yielding less than half a percent change from a reference, no-film fuel pin. In order …


Thermodynamic Modeling Of Uranium And Oxygen Containing Ternary Systems With Gadolinium, Lanthanum, And Thorium, Jacob Wesley Mcmurray Dec 2014

Thermodynamic Modeling Of Uranium And Oxygen Containing Ternary Systems With Gadolinium, Lanthanum, And Thorium, Jacob Wesley Mcmurray

Doctoral Dissertations

The CALPHAD method is used to assess the thermodynamic properties and phase relations in the U-M-O system where M = Gd, La, and Th. A compound energy formalism (CEF) model for fluorite UO2±x [urania] is extended to represent the complex U1-yMyO2±x [urania solid solution] phases. The lattice stabilities for fictive GdO2 [gadolinia] and LaO2 [lanthana] fluorite structure compounds are calculated from density functional theory (DFT) for use in the CEF for U1-yMyO2±x [urania solid solution phase] while U6+ [uranium 6 plus cation] is introduced into the …


A Study Of Energy Resolution And Non-Proportionality Of Yalo3:Ce And Gd3ga3al2o12:Ce, Samuel Bradley Donnald Dec 2014

A Study Of Energy Resolution And Non-Proportionality Of Yalo3:Ce And Gd3ga3al2o12:Ce, Samuel Bradley Donnald

Doctoral Dissertations

For many radiation detection applications, energy resolution is one of the most important detector characteristics. In well designed scintillation detectors, the energy resolution is primarily driven by two main factors - the light output and light yield non-proportionality. A great deal of research has already focused on understanding and improving the light yield of scintillation detectors; however, light yield non-proportionality is less well understood. Until recently, light yield non-proportionality was thought to be an intrinsic scintillator property with very little sample-to-sample variation. In this work, two materials have been investigated that demonstrate a variable light yield non-proportionality. The first material …


Low Pressure Chemical Vapor Deposition Of Semiconducting Boron Carbide Thin Films On Silicon, Thomas Gregory Wulz May 2014

Low Pressure Chemical Vapor Deposition Of Semiconducting Boron Carbide Thin Films On Silicon, Thomas Gregory Wulz

Masters Theses

Boron carbide thin films were grown on the (100) plane of n-type silicon in a low pressure chemical vapor deposition (CVD) system from the thermal decomposition of boron trichloride and methane reactant gases with hydrogen as a carrier gas. Boron trichloride to methane molar ratio was 5, while the boron trichloride to hydrogen molar ratio was 3.5. Thin film deposition was carried out at 900 degrees Celsius at 25 Torr. The thin films were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Energy Dispersive X-Ray Spectroscopy (EDS), Laser Induced Breakdown Spectroscopy (LIBS), and current-voltage characteristics. The crystallography of …


A Compact, Convective Flow Nak Test Loop For Material Exposure Contained In An Argon Atmosphere, David Joseph Rowekamp Aug 2013

A Compact, Convective Flow Nak Test Loop For Material Exposure Contained In An Argon Atmosphere, David Joseph Rowekamp

Masters Theses

The objective of this research project was to construct a compact NaK loop to test weld configurations for application in a space reactor. The NaK loop fits inside of standard welding glove-box, and holds 64 weld specimens and a diffusion bonded tube-plate assembly. The NaK loop has a furnace which operates at a 650 degrees Celsius. It contains two independent and by-passable cold traps to maintain low oxygen levels in the NaK. The loop also contains a coil heat exchanger to cool the NaK. The loop operates with purely with convective flow, which is driven by the temperature differential between …