Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nuclear Engineering

Methods Of Use And Manufacture Of Silver-Doped, Nano-Porous Hydroxyapatite, Cheol-Woon Kim, Richard K. Brow Jul 2019

Methods Of Use And Manufacture Of Silver-Doped, Nano-Porous Hydroxyapatite, Cheol-Woon Kim, Richard K. Brow

Nuclear Engineering and Radiation Science Faculty Research & Creative Works

A silver-doped, nano-porous hydroxyapatite material is provided that can be utilized to capture radioactive iodine, 129I. Methods of using the silver-doped, nano-porous hydroxyapatite material to remove radioactive iodine, and methods of manufacturing the material are also provided.


Microstructural Evolution Of Zirconium Carbide (Zrcₓ) Ceramics Under Irradiation Conditions, Raul Florez Jan 2019

Microstructural Evolution Of Zirconium Carbide (Zrcₓ) Ceramics Under Irradiation Conditions, Raul Florez

Doctoral Dissertations

A comprehensive understanding of the microstructural evolution of Zirconium Carbide (ZrC2) ceramics under irradiation conditions is required for their successful implementation in advanced Gen-IV gas-cooled nuclear reactors. The research presented in this dissertation focusses on elucidating the ion and electron irradiation response of ZrC2 ceramics. In the first part of the research, the microstructural evolution was characterized for ZrC2 ceramics irradiated with 10 MeV Au3+ ions up to doses of 30 displacement per atom (dpa) at 800 ºC. Coarsening of the defective microstructure, as a function of dose, was revealed by transmission electron microscopy analysis. …


Development And Characterization Of Nanostructured Steels And High Entropy Alloys For Nuclear Applications, Andrew Kalevi Hoffman Jan 2019

Development And Characterization Of Nanostructured Steels And High Entropy Alloys For Nuclear Applications, Andrew Kalevi Hoffman

Doctoral Dissertations

"Nuclear reactor materials are subjected to a harsh environment including high temperatures and radiation fluences. In order to extend the lifetime of current light water reactors (LWRs) and realize the development of advanced Gen IV nuclear reactors new materials must be developed which can withstand such an environment. This thesis involves two approaches to solving this materials problem: advanced manufacturing of current commercial alloys using severe plastic deformation (SPD) and the development of new advanced high entropy alloys (HEAs).

Because SPD is effective at achieving grain refinement, this technique was used to obtain material having a high volume fraction of …