Open Access. Powered by Scholars. Published by Universities.®

Nuclear Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Environmental Sciences

University of Nevada, Las Vegas

Alloy EP-823

2004

Articles 1 - 2 of 2

Full-Text Articles in Nuclear Engineering

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Final Progress Report (September 2003 – August 2004), Ajit K. Roy, Brendan O'Toole Oct 2004

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823 For Transmutation Applications: Final Progress Report (September 2003 – August 2004), Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The purpose of this task is to evaluate the tensile properties of three martensitic alloys namely, Alloys EP-823, HT-9 and 422 at temperatures relevant to the transmutation processes. Testing has been performed to evaluate the tensile properties of all three alloys at temperatures ranging from ambient to 600°C. The test materials were thermally-treated (quenched and tempered) prior to the evaluation of their tensile properties. The deformation characteristics of these tensile specimens, upon completion of testing, were evaluated by scanning electron microscopy (SEM). Efforts were also made to identify and characterize defects such as dislocations using transmission electron microscopy …


Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole Jan 2004

Development Of A Mechanistic Understanding Of High-Temperature Deformation Of Alloy Ep-823, Ajit K. Roy, Brendan O'Toole

Transmutation Sciences Materials (TRP)

The focus of this work is to determine the effect of elevated temperatures on the tensile properties of Alloy EP-823 and other martensitic alloys having similar compositions. The information obtained through this work describing the mechanism of elevated-temperature deformation will assist in developing suitable target structural materials possessing enhanced LBE corrosion resistance at process temperatures, allowing the continued development and eventual deployment of these technologies.