Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar Nov 2016

Kinetics And Dynamics Of Electrophoretic Translocation Of Polyelectrolytes Through Nanopores, Harshwardhan Katkar

Doctoral Dissertations

The idea of sequencing a DNA based on single-file translocation of the DNA through nanopores under the action of an electric field has received much attention over the past two decades due to the societal need for low cost and high-throughput sequencing. However, due to the high speed of translocation, interrogating individual bases with an acceptable signal to noise ratio as they traverse the pore has been a major problem. Experimental facts on this phenomenon are rich and the associated phenomenology is yet to be fully understood. This thesis focuses on understanding the underlying principles of polymer translocation, with an …


Initiated Chemical Vapor Deposition (Icvd) Polymer Thin Films : Structure-Property Effects On Thermal Degradation And Adhesion, Vijay Jain Bharamaiah Jeevendrakumar Jan 2015

Initiated Chemical Vapor Deposition (Icvd) Polymer Thin Films : Structure-Property Effects On Thermal Degradation And Adhesion, Vijay Jain Bharamaiah Jeevendrakumar

Legacy Theses & Dissertations (2009 - 2024)

Opportunities and challenges for chemical vapor deposition (CVD) of polymer thin films stems from their applications in electronics, sensors, and adhesives with demands for control over film composition, conformity and stability. Initiated chemical vapor deposition (iCVD) is a subset of the CVD technique that conjoins bulk free-radical polymerization chemistry with gas-phase processing. The novelty of iCVD technique stems from the use of an initiator that can be activated at low energies (150 – 300 °C) to react with surface adsorbed monomer to form a polymer film. This reduces risk for potential unwarranted side-reactions.