Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Refractory Plasmonics, Urcan Guler, Alexandra Boltasseva, Vladimir M. Shalaev Apr 2014

Refractory Plasmonics, Urcan Guler, Alexandra Boltasseva, Vladimir M. Shalaev

U. Guler

Refractory materials are defined as those with a high melting point and chemical stability at temperatures above 2000°C. Applications based on refractory materials, usually nonmetallic, span a wide range of areas including industrial furnaces, space shuttle shields, and semiconductor technology. Metals have also been studied as refractories; however, the optical properties of those metals that have been tried for high-temperature applications were not good enough to be used in plasmonic applications (these are almost entirely based on noble metals, which are not good refractories). Refractory materials that exhibit reasonably good plasmonic behavior would undoubtedly enable new devices and boost such …


Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru Jan 2014

Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru

Theses and Dissertations--Electrical and Computer Engineering

Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage – LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit …