Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Nanoscience and Nanotechnology

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck Sep 2022

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Editorial: Carbon- And Inorganic-Based Nanostructures For Energy Applications, Federico Cesano, M. Jasim Uddin, Yuanbing Mao, Muhammad N. Huda Nov 2020

Editorial: Carbon- And Inorganic-Based Nanostructures For Energy Applications, Federico Cesano, M. Jasim Uddin, Yuanbing Mao, Muhammad N. Huda

Chemistry Faculty Publications and Presentations

No abstract provided.


Three-Dimensional Nanomaterials For Supercapacitor Applications: From Metal Oxides To Metal Phosphides, Zhi Zheng Dec 2017

Three-Dimensional Nanomaterials For Supercapacitor Applications: From Metal Oxides To Metal Phosphides, Zhi Zheng

University of New Orleans Theses and Dissertations

Over the past few years, energy storage devices have received tremendous interest due to the increasing demand for sustainable and renewable energy in modern society. Supercapacitors are considered as one of the most promising energy storage devices because of their high power density and long cycle life. However, low energy density remains as the main shortcoming for supercapacitors. The overall performance of supercapacitors is predominantly determined by the characteristics of the electrodes. Specifically, constructing nanostructured electrode material has been proven as an efficient way to improve the performance by providing large surface area and short ionic and electronic diffusion paths. …


Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock Dec 2017

Generalized Ellipsometry On Complex Nanostructures And Low-Symmetry Materials, Alyssa Mock

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, complex anisotropic materials are investigated and characterized by generalized ellipsometry. In recent years, anisotropic materials have gained considerable interest for novel applications in electronic and optoelectronic devices, mostly due to unique properties that originate from reduced crystal symmetry. Examples include white solid-state lighting devices which have become ubiquitous just recently, and the emergence of high-power, high-voltage electronic transistors and switches in all-electric vehicles. The incorporation of single crystalline material with low crystal symmetry into novel device structures requires reconsideration of existing optical characterization approaches. Here, the generalized ellipsometry concept is extended to include applications for materials with …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa Nov 2016

Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa

USF Tampa Graduate Theses and Dissertations

Multifunctional nanocomposites are promising for a variety of applications ranging from microwave devices to biomedicine. High demand exists for magnetically tunable nanocomposite materials. My thesis focuses on synthesis and characterization of novel nanomaterials such as polymer nanocomposites (PNCs) and multi-walled carbon nanotubes (MWCNTs) with magnetic nanoparticle (NP) fillers.

Magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) NPs with controlled shape, size, and crystallinity were successfully synthesized and used as PNC fillers in a commercial polymer provided by the Rogers Corporation and poly(vinylidene fluoride). Magnetic and microwave experiments were conducted under frequencies of 1-6 GHz in the presence of …


Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama Oct 2016

Metal-Organic Hybrid Nanocomposites For Energy Harvesting Applications, Thulitha Madawa Abeywickrama

Masters Theses & Specialist Projects

Various synthetic methods have been developed to produce metal nanostructures including copper and iron nanostructures. Modification of nanoparticle surface to enhance their characteristic properties through surface functionalization with organic ligands ranging from small molecules to polymeric materials including organic semiconducting polymers is a key interest in nanoscience. However, most of the synthetic methods developed in the past depend widely on non-aqueous solvents, toxic reducing agents, and high temperature and high-pressure conditions. Therefore, to produce metal nanostructures and their nanocomposites with a simpler and greener method is indeed necessary and desirable for their nano-scale applications. Hence the objective of this thesis …


Tailoring The Optical Properties Of Silicon With Ion Beam Created Nanostructures For Advanced Photonics Applications, Perveen Akhter Jan 2016

Tailoring The Optical Properties Of Silicon With Ion Beam Created Nanostructures For Advanced Photonics Applications, Perveen Akhter

Legacy Theses & Dissertations (2009 - 2024)

In today’s fast life, energy consumption has increased more than ever and with that the demand for a renewable and cleaner energy source as a substitute for the fossil fuels has also increased. Solar radiations are the ultimate source of energy but harvesting this energy in a cost effective way is a challenging task. Si is the dominating material for microelectronics and photovoltaics. But owing to its indirect band gap, Si is an inefficient light absorber, thus requiring a thickness of solar cells beyond tens of microns which increases the cost of solar energy. Therefore, techniques to increase light absorption …


Collaborative Research: A Nanostructure Sensor For Measuring Dissolved Iron And Copper Concentrations In Coastal And Offshore Seawater, Mark Wells, Carl Tripp Apr 2015

Collaborative Research: A Nanostructure Sensor For Measuring Dissolved Iron And Copper Concentrations In Coastal And Offshore Seawater, Mark Wells, Carl Tripp

University of Maine Office of Research Administration: Grant Reports

Iron and Copper serve as key co-constituents for numerous enzymes in a wide range of biological systems, and their elevated or impoverished levels in aqueous systems have dramatic consequences at organismal, ecosystem, and human health scales. Over the last decade these effects have increasingly been recognized to be important in ocean systems. Identifying sites and times where these metals cause negative environmental outcomes is greatly hampered by their comparatively sparse datasets. This problem is a direct consequence of the analytical challenge of obtaining accurate Fe and Cu determinations in saline waters at very low (trace) concentrations, and the limitations of …


Multiscale Study Of Batio3 Nanostructures And Nanocomposites, Lydie Louis Louis Aug 2013

Multiscale Study Of Batio3 Nanostructures And Nanocomposites, Lydie Louis Louis

Graduate Theses and Dissertations

Advancements in integrated nanoelectronics will continue to require the use of unique materials or systems of materials with diverse functionalities in increasingly confined spaces.

Hence, research on finite-dimensional systems strive to unearth and expand the knowledge of fundamental physical properties in certain key materials which exhibit numerous concurrent and exploitable functions.

Correspondingly, ferroelectric nanostructures, which particularly display a plethora of complex phenomena, prevalent in countless fields of research, are noteworthy candidates. Presently, however, the assimilation of zero-(0D) and one-dimensional (1D) ferroelectric into micro- or nano-electronics has been lagging, in part due to a lack of applied and fundamental studies but …


Mueller Based Scatterometry And Optical Characterization Of Semiconductor Materials, Gangadhara Raja Muthinti Jan 2013

Mueller Based Scatterometry And Optical Characterization Of Semiconductor Materials, Gangadhara Raja Muthinti

Legacy Theses & Dissertations (2009 - 2024)

Scatterometry is one of the most useful metrology methods for the characterization and control of critical dimensions (CD) and the detailed topography of periodic structures found in microelectronics fabrication processes. Spectroscopic ellipsometry (SE) and normal incidence reflectometry (NI) based scatterometry are the most widely used optical methodologies for metrology of these structures. Evolution of better optical hardware and faster computing capabilities led to the development of Mueller Matrix (MM) based Scatterometry (MMS). Dimensional metrology using full Mueller Matrix (16 element) scatterometry in the wavelength range of 245nm-1000nm was discussed in this work. Unlike SE and NI, MM data provides complete …


A Novel Fabrication Technique For Three-Dimensional Nanostructures, Ravi Kiran Bonam Jan 2012

A Novel Fabrication Technique For Three-Dimensional Nanostructures, Ravi Kiran Bonam

Legacy Theses & Dissertations (2009 - 2024)

Three dimensional micro- and nano-structures are commonly used in the field of Photonics, Optoelectronics, Sensors and Biological applications. Although numerous physical models are developed, a major challenge has been in their fabrication which is commonly limited to conventional layer-by-layer techniques. In this dissertation, a novel method for fabricating three dimensional structures using Electron Beam Lithography (EBL) will be presented.


Solvent Dependent Morphologies In Thiol-Ene Photopolymerization: A Facile Route To Synthesis Of Resorcinarene Nanocapsules, Zaharoula Marie Kalaitzis Oct 2009

Solvent Dependent Morphologies In Thiol-Ene Photopolymerization: A Facile Route To Synthesis Of Resorcinarene Nanocapsules, Zaharoula Marie Kalaitzis

Chemistry & Biochemistry Theses & Dissertations

Synthesis of morphologically distinct polymeric nanostructures is vital for their wide ranging applications from nanomedicine to material science. Among various polymeric nanostructures, nanocapsules in particular have attracted a lot of attention as nanoreactors and drug delivery vehicles in nanomedicine. Often, synthesis of nanocapsules is achieved by template-based approaches. A direct, template-free method for the fabrication of nanocapsules and a variety of other morphologically distinct polymeric architectures was developed. The photopolymerization of a resorcinarene thiol-ene surfactant in various solvents lead to the formation of nanocapsules, nanoparticles, fibers, distorted honeycomb-like lattices, and sheets. The progress of the polymerization reaction and the morphology …


Substituent Effect On The Electronic And Assembling Properties Of Asymmetric Phenazine Derivatives, Bin Cao Jan 2009

Substituent Effect On The Electronic And Assembling Properties Of Asymmetric Phenazine Derivatives, Bin Cao

UNLV Theses, Dissertations, Professional Papers, and Capstones

Currently, one-dimensional (1-D) nanostructures have drawn much interest because of their potential applications for nanoscale optoelectronic devices. Self-assembly (SA) based on π-conjugated systems through various intermolecular interactions has been widely used to produce 1-D nanostructure. Morphology of the assembled structures can be modified by incorporating substituents, which provide additional secondary interactions. Meanwhile, those substituents also influence the electronic properties of the molecules. Previous studies have made little effort to systematically study subsistent effects on both electronic and SA properties.

The primary objective of this research is to generate controllable 1-D structures through SA, and to provide a fundamental understanding of …


Electron Microscopy And Optical Characterization Of Cadmium Sulphide Nanocrystals Deposited On The Patterned Surface Of Diatom Biosilica, Timothy Gutu, Debra K. Gale, Clayton Jeffryes, Wei Wang, Chih-Hung Chang, Gregory L. Rorrer, Jun Jiao Jan 2009

Electron Microscopy And Optical Characterization Of Cadmium Sulphide Nanocrystals Deposited On The Patterned Surface Of Diatom Biosilica, Timothy Gutu, Debra K. Gale, Clayton Jeffryes, Wei Wang, Chih-Hung Chang, Gregory L. Rorrer, Jun Jiao

Physics Faculty Publications and Presentations

Intricately patterned biosilica obtained from the shell of unicellular algae called diatoms serve as novel templates for fabrication of optoelectronic nanostructures. In this study, the surface of diatom frustules that possessed hierarchical architecture ordered at the micro and nanoscale was coated with a nanostructured polycrystalline cadmium sulphide (CdS) thin film using a chemical bath deposition technique. The CdS thin film was composed of spherical nanoparticles with a diameter of about 75 nm. The CdS nanoparticle thin film imparted new photoluminescent properties to the intricately patterned diatom nanostructure. The imparted photoluminescent properties were dependent on the CdS coverage onto the frustules …


Cofe2o4 Nanostructures With High Coercivity, J S. Jung, J H. Lim, K H. Choi, S L. Oh, Y R. Kim, S H. Lee, D A. Smith, K L. Stokes, L Malkinski, C J. O'Connor Jan 2005

Cofe2o4 Nanostructures With High Coercivity, J S. Jung, J H. Lim, K H. Choi, S L. Oh, Y R. Kim, S H. Lee, D A. Smith, K L. Stokes, L Malkinski, C J. O'Connor

Physics Faculty Publications

Nanometer-sized ferrite magnetic materials are the subject of intense research interest due to their potential applications in high-density magnetic information storage. One of the most explored ferrite materials is the cobalt ferrite (CoFe2O4).. We have synthesized cobalt ferrite nanowires using cobalt ferrite nanoparticles in a porous anodic alumina template (AAT). The process of embedding ferrimagnetic particles into the pores was assisted by the magnetic field of a permanent magnet placed in vacuum directly under the substrate. Particles synthesized in the template were subsequently annealed at 600 °C for 2 h in Ar gas forming arrays of cobalt ferrite nanowires inside …