Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Nanoscience and Nanotechnology

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu Dec 2021

Incorporation Of Zinc In Pre-Alloyed Cuin[Zn]S2/Zns Quantum Dots, Jean Carlos Morales Orocu

Graduate Theses and Dissertations

Since the early 2000s heavy-metal-free quantum dots (QDs) such as CuInS2/ZnS have attempted to replace CdSe, their heavy-metal-containing counterparts. CuInS2/ZnS is synthesized in a two-step process that involves the fabrication of CuInS2 (CIS) nanocrystals (NCs) followed by the addition of zinc precursors. Instead of the usual core/shell architecture often exhibited by binary QDs, coating CIS QDs results in alloyed and/or partially alloyed cation-exchange (CATEX) QDs. The effect that zinc has on the properties of CIS NCs was studied by incorporating zinc during the first step of the synthesis. Different In:Cu:Zn ratios were employed in this study, maintaining a constant 4:1 …


Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore May 2021

Oxone® Mediated Tempo-Oxidized Cellulose Nanomaterials: Material Characterization, Ultrafiltration Membrane Separations, And Thin Film Composite Gas Transport Analysis, John Phillips Moore

Graduate Theses and Dissertations

Cellulose nanomaterials (CNMs) are derived from plant matter and are comprised of nanoscopic cellulose crystals and fibers. They have a diverse set of applications, from cosmetics to oil recovery. This study focuses on the properties of Oxone® mediated TEMPO-oxidized cellulose nanomaterials (OTO-CNMs) and their use in controlling the transport properties of polymeric substrates. Synthesis and characterization of cellulosic nanoparticles have resulted in the creation of OTO-CNMs with properties that increase hydrophilicity. With added hydrophilicity, OTO-CNMs possess lower fouling propensity, making them ideal membrane additive for transport limited separations such as hemodialysis.

To utilize the material and unique properties thereof, this …


Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor Aug 2020

Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor

Boise State University Theses and Dissertations

The energy-water nexus poses an integrated research challenge, while opening up an opportunity space for the development of energy efficient technologies for water remediation. Capacitive Deionization (CDI) is an upcoming reclamation technology that uses a small applied voltage applied across electrodes to electrophoretically remove dissolved ionic impurities from wastewater streams. Similar to a supercapacitor, the ions are stored in the electric double layer of the electrodes. Reversing the polarity of applied voltage enables recovery of the removed ionic impurities, allowing for recycling and reuse. Simultaneous materials recovery and water reclamation makes CDI energy efficient and resource conservative, with potential to …


Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson May 2020

Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson

Arts & Sciences Electronic Theses and Dissertations

The large absorption cross sections and the tunability of the energetic spacings between the states in the conduction (CB) and valence band (VB) within a semiconductor nanoparticle (NP) make them promising media for capturing electromagnetic radiation and converting it into charge carriers, or electricity. In photovoltaic devices that incorporate semiconductor NPs, it would be ideal if every photon could be absorbed by a NP and the carriers could be collected with perfect efficiency and without loss of energy. The relaxation pathways of the carriers within the NPs down to the band edge and their fate at the band edge contribute …


Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch Jan 2020

Nanostructured Metal Thin Films As Components Of Composite Membranes For Separations And Catalysis, Michael J. Detisch

Theses and Dissertations--Chemical and Materials Engineering

Novel metallic thin film composite membranes are synthesized and evaluated in this work for improved separations and catalysis capabilities. Advances in technology that allow for improved membrane performance in solvent separations are desirable for low molecular weight organic separation applications such as those in pharmaceutical industries. Additionally, the introduction of catalytic materials into membrane systems allow for optimization of complex processes in a single step. By adding a nanostructured metallic thin film to its surface, a polymer membrane may be modified to exhibit these improved properties. Using magnetron sputtering, thin metal films may be deposited on commercially available membranes to …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li Jun 2019

Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li

Journal of Electrochemistry

Nanomaterials have shown many potential application prospects in the biomedical field, such as medical imaging, drug delivery and biosensing due to their unique physical and chemical properties. In this review we focus on nanomaterials that have shown not only abilities of radiation protection, but also good electrocatalytic activities toward reduction reactions of hydrogen peroxide and oxygen. We discuss the abilities of radiation protection of these nanomaterials that are ascribed to their enzyme-like activities because their catalytic properties provide an effective pathway for scavenging free radicals in vivo via rapid reactions with reactive oxygen species. We also provide insights into electrocatalytic …


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The …


Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu Nov 2018

Novel Design And Synthesis Of Composite Nanomaterials For Lithium And Multivalent Ion Batteries, Wangwang Xu

LSU Doctoral Dissertations

Nowadays, the fast-increasing energy demand for efficient, sustainable and environmentally-friendly energy storage devices remains a significant and challenging issue. Lithium ion batteries (LIBs) have been widely used as commercial energy devices in portable electronics and also shown great promise in upcoming large-scale applications due to their advantages of environmental safety, efficiency in energy delivering and light weight. However, due to their limited capacity, energy densities and cycle ability, LIBs still need further improvement to expand their applications to a larger field, especially electric vehicle (EVs) and hybrid electric vehicles (HEVs), in which energy storage devices with large capacity and high …


Recent Advances In Non-Noble Metal Nanomaterials For Oxygen Evolution Electrocatalysis, Dan-Dan Zhao, Nan Zhang, Ling-Zheng Bu, Qi Shao, Xiao-Qing Huang Oct 2018

Recent Advances In Non-Noble Metal Nanomaterials For Oxygen Evolution Electrocatalysis, Dan-Dan Zhao, Nan Zhang, Ling-Zheng Bu, Qi Shao, Xiao-Qing Huang

Journal of Electrochemistry

Hydrogen is a kind of renewable energies with the merits of environmentally friendly, abundance and high weight energy density, which can replace the fossil energy. The electrolysis of water is regarded as the most effective way to generate hydrogen. Owing to the sluggish kinetics and large overpotential of the anode oxygen evolution reaction (OER), the efficiency of the cathode hydrogen evolution reaction is greatly limited. Therefore, it is highly desirable to explore efficient, stable and low cost electrocatalysts to reduce the overpotential of OER and improve the efficiency of hydrogen evolution. Based on the natural characteristics of non-noble metal catalysts …


Advanced Purification And Direct-Write 3d Nanoprinting Via Focused Electron Beam Induced Deposition, Brett Bloxton Lewis Aug 2017

Advanced Purification And Direct-Write 3d Nanoprinting Via Focused Electron Beam Induced Deposition, Brett Bloxton Lewis

Doctoral Dissertations

This dissertation addresses three difficulties with focused electron beam induced deposition preventing broader application; purity, spatial control, and mechanical characterization.

Focused electron beam induced deposition (FEBID) has many advantages as a nanoscale fabrication tool. It is compatible for implementation into current lithographic techniques and has the potential to direct-write in a single step nanostructures of a high degree of complexity. FEBID is a very versatile tool capable of fabricating structures of many different compositions ranging from insulating oxides to conducting metals.

Due to the complexity of the technique and the difficulty in directly measuring many important variables, FEBID has remained …


Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a …


Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers Apr 2015

Electrospinning Of Polycaprolactone Core-Shell Nanofibers With Anti-Cancer Drug, Sakib Iqbal, Mujibur Khan, Saheem Absar, Andrew Diamanduros, Samuel Chambers

GS4 Georgia Southern Student Scholars Symposium

Encapsulation of a model anti-cancer drug, 5-Fluorouracul (5-FU) into biocompatible core-shell nanofibers of polycaprolactone (PCL) nanofibers was fabricated using a coaxial electrospinning process. Our work aims to solve these issues using a novel method of fabrication of fibers featuring confinement of drugs within a biodegradable core-shell structure, thereby permitting sustained release of drugs to specific sites of treatment, such as tissues affected with tumor cells. The coaxial electrospinning was performed using a sheath polymer solution consisting of a 14 wt% PCL solution and a 5 wt% solution of 5-FU as the core solution. Dimethylformamide (DMF) was used as the solvent …


Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan May 2013

Novel Bimetallic Plasmonic Nanomaterials, Ritesh Sachan

Doctoral Dissertations

Plasmonic nanomaterials have attracted a lot of attention recently due to their application in various fields such as chemical and biological sensing, catalysis, energy harvesting and optical devices. However, there is a need to address several outstanding issues with these materials, including cost-effective synthesis, tunability in plasmonic characteristics, and long term stability. In this thesis, we have focused on bimetallic nanoparticles (NPs) of Ag and Co due to their immiscibility as well as their individual properties. First, a pulsed laser induced dewetting route was used to synthesize Ag-Co bimetallic plasmonic NPs. An synthesis parameter space was derived to show the …


Controlled Synthesis Of One Dimensional Nanostructured Materials And Their Applications As Catalyst Supports In Proton Exchange Membrane Fuel Cells, Mohammad Norouzi Banis Dec 2012

Controlled Synthesis Of One Dimensional Nanostructured Materials And Their Applications As Catalyst Supports In Proton Exchange Membrane Fuel Cells, Mohammad Norouzi Banis

Electronic Thesis and Dissertation Repository

Nanomaterials have attracted significant interest in the past decade due to their unique structure and properties compared to their bulk counterparts. Nanomaterials-based solutions can address challenges in various technologies such as proton exchange membrane fuel cells (PEMFCs). PEMFC is an innovative energy conversion technology to directly convert chemical energy to electrical energy by using hydrogen as fuel. However, the current PEMFC system still faces significant technological roadblocks which have to be overcome before the system can become economically viable. A major impediment to the commercialization of PEMFC is the high cost of materials and manufacturing and stability, which is primarily …


Electrocatalytic Oxidation Of Glucose On Nano Pt/C Electrode, Cui-Lian Chen Feb 2006

Electrocatalytic Oxidation Of Glucose On Nano Pt/C Electrode, Cui-Lian Chen

Journal of Electrochemistry

Nano Pt/C electrocatalysts were prepared by intermittent microwave heating method.The electrooxidation of glucose on smooth Pt and~Pt/C electrodes has been studied and compared.The results showed that the electrochemical properties on nano Pt/C were improved due to the reduction of the overpotential and the increase in the kinetic rate.The surface area would be significantly increased when the particle size of the catalyst was reduced to nano-scale,resulting in the increase in the activity.The enhancement in the resistance to poisoning could be explained that the oxygen-containing species are easier to react with poisoning species on nano Pt/C and re-active the electrode.