Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Metal-Assisted Etching Of Silicon Molds For Electroforming, Ralu Divan, Dan Rosenthal '14, Karim Ogando, Leonidas E. Ocola, Daniel Rosenmann, Nicolaie Moldovan Sep 2013

Metal-Assisted Etching Of Silicon Molds For Electroforming, Ralu Divan, Dan Rosenthal '14, Karim Ogando, Leonidas E. Ocola, Daniel Rosenmann, Nicolaie Moldovan

Student Publications & Research

Ordered arrays of high-aspect-ratio micro/nanostructures in semiconductors stirred a huge scientific interest due to their unique one-dimensional physical morphology and the associated electrical, mechanical, chemical, optoelectronic, and thermal properties. Metal-assisted chemical etching enables fabrication of such high aspect ratio Si nanostructures with controlled diameter, shape, length, and packing density, but suffers from structure deformation and shape inconsistency due to uncontrolled migration of noble metal structures during etching. Hereby the authors prove that a Ti adhesion layer helps in stabilizing gold structures, preventing their migration on the wafer surface while not impeding the etching. Based on this finding, the authors demonstrate …


Structure And Optical Properties Of Self-Assembled Multicomponent Plasmonic Nanogels, Tao Cong, Satvik N. Wani, Peter Anthony Paynter, Radhakrishna Sureshkumar Jul 2011

Structure And Optical Properties Of Self-Assembled Multicomponent Plasmonic Nanogels, Tao Cong, Satvik N. Wani, Peter Anthony Paynter, Radhakrishna Sureshkumar

Biomedical and Chemical Engineering - All Scholarship

Multicomponent plasmonic nanogels (PNGs) capable of broadband absorption of light in the 400-700 nm wavelength range were synthesized by the self-assembly of metal nanoparticles with wormlike surfactant micelles. Small angle x-ray scattering and rheological experiments suggest that the nanoparticles bridge micelle fragments to aid the formation a stable gel phase with exceptional color uniformity. Their optical absorbance could be robustly tuned by changing the nanoparticle type (Au/Ag), size, shape, and/or concentration. The PNGs have relatively low viscosity and are thermoreversible. Potential applications to the manufacturing of coatings and interfaces for solar energy harvesting and reconfigurable optical devices can be envisioned.