Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som May 2018

Increasing Ph In Cancer: Enabling A New Therapeutic Paradigm Using Novel Carbonate Nanoparticles, Avik Som

McKelvey School of Engineering Theses & Dissertations

Enormous progress has been made to treat cancer, and yet the mortality rate of cancer remains unacceptably high. High clinical resistance to molecularly targeted therapeutics has pushed interest again towards inhibiting universal biochemical hallmarks of cancer. Recent evidence suggests that malignant tumors acidify the local extracellular environment to activate proteases for degrading the tumor matrix, which facilitates metastasis, and explains why more aggressive tumors are more acidic. Current therapies have only focused on using the low pH for enhancing drug release in tumors, thereby still relying on the traditional paradigm of intracellular inhibition of pathways, a method that continues to …


The Microfluidic Intravital Window : A Tool For Manipulation And Imaging Of The Tumor Microenvironment, Logan William Butt Jan 2018

The Microfluidic Intravital Window : A Tool For Manipulation And Imaging Of The Tumor Microenvironment, Logan William Butt

Legacy Theses & Dissertations (2009 - 2024)

The tumor microenvironment (TME) is a heterogeneous collection of both healthy and pathological cells, whose complex interactions hold the key for understanding and overcoming cancer. Metastasis leverages these complex interactions into a sophisticated process by which single cells from the tumor disseminate into the blood and form new colonies in other organ systems. Subsequent formation of tumors throughout the body, as a direct result of metastatic events, is responsible for most deaths related to cancer, making metastasis a necessary target for cancer therapy.