Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

3d Printing Nanostructured Thermoelectric Device, Qianru Jia, Collier Miers, Amy Marconnet Aug 2015

3d Printing Nanostructured Thermoelectric Device, Qianru Jia, Collier Miers, Amy Marconnet

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermoelectric materials convert thermal energy to electrical energy and vice versa. Thermoelectrics have attracted much attention and research efforts due to the possibility solving electronic cooling problems and reducing energy consumption through waste heat recovery. The efficiency of a thermoelectric material is determined by the dimensionless figure of merit ZT, which depends on both thermal and electrical properties. Researchers have worked for several decades to improve the ZT, but there had been little progress until nanomaterials and nanofabrication became widely available. Nanotechnology makes the ZT enhancement attainable by disconnecting the linkage between thermal and electrical transport. Printing customized, flexible thermoelectric …


Development Of A Shape Memory Polymer Soft Microgripper, Marshall Tatro, David J. Cappelleri, Wuming Jing Aug 2015

Development Of A Shape Memory Polymer Soft Microgripper, Marshall Tatro, David J. Cappelleri, Wuming Jing

The Summer Undergraduate Research Fellowship (SURF) Symposium

The ability to control microrobots by means of magnetic fields has become of increasing interest to researchers. These robots’ ability to reach places tethered microrobots otherwise could not leads to many possible applications in the body, such as delivering drugs to targeted locations and performing biopsies. This study shows the use of shape memory polymer (SMP) to wirelessly actuate a microgripper to be used by a controllable microrobot to achieve these functions. Many smart materials were analyzed in order to find the material that most effectively would accomplish wirelessly gripping, manipulating, and releasing a microobject. Multiple microgripper designs were designed, …


Fracture Mechanics-Based Simulation Of Pv Module Delamination, Dominic I. Jarecki, Johanna B. Palsdottir, Peter Bermel, Marisol Koslowski Aug 2015

Fracture Mechanics-Based Simulation Of Pv Module Delamination, Dominic I. Jarecki, Johanna B. Palsdottir, Peter Bermel, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

Photovoltaic (PV) cells are rapidly growing as a renewable alternative to fossil fuels like coal, oil, and natural gas. However, greater adoption has also reduced government subsidies, placing the onus of making solar panels economically competitive on innovative research. While multiple methods have been considered for reducing costs, with each reduction in cost comes the associated peril of reduction in quality and useful lifetime. Several problems considered solved have now resurfaced as potential failure mechanisms with the introduction of cheaper PV cell technologies. However, to remain economically viable, PV modules will not only have to become cheaper, they will have …


Thermophotovoltaic System Simulation With Realistic Experimental Considerations, Evan L. Schlenker, Zhiguang Zhou, Peter Bermel Aug 2015

Thermophotovoltaic System Simulation With Realistic Experimental Considerations, Evan L. Schlenker, Zhiguang Zhou, Peter Bermel

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermophotovoltaic (TPV) systems are a promising type of energy generation method that convert heat into electricity via thermal radiation. TPV has potential to benefit the economy, the energy sector, and the environment by converting waste heat from other power generation methods into electricity. Simulations of these systems can play a key role in designing TPV systems and validating their experimental performance. Current simulation tools can model important aspects of TPV systems fairly accurately, but generally make certain simplifying assumptions that are challenging to reproduce in experiments. Developing a simulation tool that accurately captures thermal emission and reflection in complex, realistic …


Nanomechanics Simulation Toolkit - Dislocations Make Or Break Materials, Michael N. Sakano, Alejandro Strachan, David Johnson, Mitchell Wood Aug 2015

Nanomechanics Simulation Toolkit - Dislocations Make Or Break Materials, Michael N. Sakano, Alejandro Strachan, David Johnson, Mitchell Wood

The Summer Undergraduate Research Fellowship (SURF) Symposium

The goal of computational material science is to improve existing materials and design new ones through mathematical calculations. In particular, molecular dynamic simulations can allow for visualization of dislocations in a material, along with its resulting behavior when under stress. For example, plastic deformation and strain hardening result from the movement, multiplication and interaction of dislocations within the crystal structure. A simulation tool to study these phenomena was developed for the nanoHUB web resource as a part of the Network for Computational Nanotechnology at Purdue University and targets audiences ranging from undergraduate students to researchers. We created a user-friendly environment …


Electronic And Mechanical Material Properties From Dft Calculations, Usama Kamran, David Guzman, Alejandro Strachan Aug 2015

Electronic And Mechanical Material Properties From Dft Calculations, Usama Kamran, David Guzman, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Materials modeling provides a cost and time efficient method for studying their properties, especially in nanotechnology where length and time scales are not accessible experimentally. Our research focuses on developing a tool useful for both instructional and research purposes that calculates material properties. The tool relies on density functional theory (DFT) calculations to compute specific properties for a wide range of materials including semiconductors, insulators, and metals. A major goal with our tool was to keep the GUI very simple for novice users, such as students, while retaining an advanced option section for experienced users, such as researchers. The tool …


Simplified Generation Of The Input Models Of Object Oriented Micromagnetic Framework (Oommf), Jinyang Yu, Rafatul Faria, Supriyo Datta, Tanya A. Faltens Aug 2015

Simplified Generation Of The Input Models Of Object Oriented Micromagnetic Framework (Oommf), Jinyang Yu, Rafatul Faria, Supriyo Datta, Tanya A. Faltens

The Summer Undergraduate Research Fellowship (SURF) Symposium

Object Oriented MicroMagnetic Framework (OOMMF) is a micromagnetic simulation tool. It takes a memory initialization file (MIF) as the input and outputs various forms of data such as data table, graph and magnetic configuration plots. It is accurate and fast compared to other existing tools such as MATLAB. Few experimentalists used it in the past, however, due to two main reasons. First, OOMMF requires a specific version of programming environment on the local computer which is difficult to be installed. Second, MIF file is very complicated to code and it also requires users to read a lengthy guidelines. Our solution …