Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Engineering The Ground State Of Complex Oxides, Derek Joseph Meyers Jul 2015

Engineering The Ground State Of Complex Oxides, Derek Joseph Meyers

Graduate Theses and Dissertations

Transition metal oxides featuring strong electron-electron interactions have been at the forefront of condensed matter physics research in the past few decades due to the myriad of novel and exciting phases derived from their competing interactions. Beyond their numerous intriguing properties displayed in the bulk they have also shown to be quite susceptible to externally applied perturbation in various forms. The dominant theme of this work is the exploration of three emerging methods for engineering the ground states of these materials to access both their applicability and their deficiencies.

The first of the three methods involves a relatively new set …


Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari May 2015

Epitaxial Growth Of Silicon On Poly-Crystalline Si Seed Layer At Low Temperature By Using Hot Wire Chemical Vapor Deposition, Manal Abdullah Aldawsari

Graduate Theses and Dissertations

There has been a growing interest in using low cost material as a substrate for the large grained polycrystalline silicon photovoltaic devices. The main property of those devices is the potential of obtaining high efficiency similar to crystalline Si devices efficiency yet at much lower cost because of the thin film techniques. Epitaxial growth of Si at low temperatures on low cost large grained seed layers, prepared by aluminum induced crystallization method (AIC), using hot wire chemical vapor deposition (HWCVD) system is investigated in this thesis. In this work, different parameters have been studied in order to optimize the growth …


Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson Apr 2015

Growth Of Low Disorder Gaas/Algaas Heterostructures By Molecular Beam Epitaxy For The Study Of Correlated Electron Phases In Two Dimensions, John D. Watson

Open Access Dissertations

The unparalleled quality of GaAs/AlGaAs heterostructures grown by molecular beam epitaxy has enabled a wide range of experiments probing interaction effects in two-dimensional electron and hole gases. This dissertation presents work aimed at further understanding the key material-related issues currently limiting the quality of these 2D systems, particularly in relation to the fractional quantum Hall effect in the 2nd Landau level and spin-based implementations of quantum computation.^ The manuscript begins with a theoretical introduction to the quantum Hall effect which outlines the experimental conditions necessary to study the physics of interest and motivates the use of the semiconductor growth …


Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai Jan 2015

Multiscale Examination And Modeling Of Electron Transport In Nanoscale Materials And Devices, Douglas R. Banyai

Dissertations, Master's Theses and Master's Reports - Open

For half a century the integrated circuits (ICs) that make up the heart of electronic devices have been steadily improving by shrinking at an exponential rate. However, as the current crop of ICs get smaller and the insulating layers involved become thinner, electrons leak through due to quantum mechanical tunneling. This is one of several issues which will bring an end to this incredible streak of exponential improvement of this type of transistor device, after which future improvements will have to come from employing fundamentally different transistor architecture rather than fine tuning and miniaturizing the metal-oxide-semiconductor field effect transistors (MOSFETs) …


Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana Jan 2015

Understanding Electronic Structure And Transport Properties In Nanoscale Junctions, Kamal B. Dhungana

Dissertations, Master's Theses and Master's Reports - Open

Understanding the electronic structure and the transport properties of nanoscale materials are pivotal for designing future nano-scale electronic devices. Nanoscale materials could be individual or groups of molecules, nanotubes, semiconducting quantum dots, and biomolecules. Among these several alternatives, organic molecules are very promising and the field of molecular electronics has progressed significantly over the past few decades. Despite these progresses, it has not yet been possible to achieve atomic level control at the metal-molecule interface during a conductance measurement, which hinders the progress in this field. The lack of atomic level information of the interface also makes it much harder …


The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang Jan 2015

The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang

Graduate College Dissertations and Theses

Σ3{111} coherent twin boundary (CTB) in face-centered-cubic (FCC) metals and alloys have been regarded as an efficient way to simultaneously increase strength and ductility at the nanoscale. Extensive study of dislocation-CTB interaction has been carried out by a combination of computer simulations, experiments and continuum theory. Most of them, however, are based on the perfect CTB assumption. A recent study [Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12(8):697-702.] has revealed the existence of intrinsic kink-like defects in CTBs of nanotwinned copper through nanodiffraction mapping technique, and has confirmed the effect of …


Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties And Applications, Urcan Guler, Sergey Suslov, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir M. Shalaev Dec 2014

Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties And Applications, Urcan Guler, Sergey Suslov, Alexander V. Kildishev, Alexandra Boltasseva, Vladimir M. Shalaev

U. Guler

Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities …