Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Nanoscience and Nanotechnology

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


Pulsed Laser Coating Of Bioceramic (Hap) And Niti Nanoparticles On Metallic Implants, Aayush Goswami, Gary J. Cheng Oct 2013

Pulsed Laser Coating Of Bioceramic (Hap) And Niti Nanoparticles On Metallic Implants, Aayush Goswami, Gary J. Cheng

The Summer Undergraduate Research Fellowship (SURF) Symposium

This research deals with increasing the biocompatibility of the bio implants which have a global market valued more than $94.1 billion . The surface of the metal alloys used for the bone implants need to be coated with bio compatible materials like HAp(Hydroxyapatite), graphene, etc. in order to promote the growth of cells(osteoblasts) on the surface of the implants. Various techniques like plasma spray coating, ion beam sputter coating, etc. have been used before to coat such materials on a substrate, however these have faced problems of coating quality. In order to perfect this coating, that is make it more …


Tuning The Magnetostructural Phase Transition In Ferh Nanocomposites, Radhika Barua, Xiujuan Jiang, Felix Jiménez-Villacorta, J. Shield, D. Heiman, L. Lewis Aug 2013

Tuning The Magnetostructural Phase Transition In Ferh Nanocomposites, Radhika Barua, Xiujuan Jiang, Felix Jiménez-Villacorta, J. Shield, D. Heiman, L. Lewis

Donald Heiman

Effects of nanostructuring on the magnetostructural response of the near-equiatomic FeRh phase were investigated in nanocomposite materials synthesized by rapid solidification and subsequent annealing of an alloy of nominal atomic composition (FeRh)5Cu95. Transmission electron microscopy studies confirm attainment of a phase-separated system of nanoscaled (∼10–15 nm diameter) precipitates, consistent with FeRh embedded in a Cu matrix. These nanoprecipitates are crystallographically aligned with the coarse-grained Cu matrix and possess an L10-type (CuAu 1) structure, in contrast to the B2 (CsCl)-type structure of bulk FeRh. It is proposed that the face-centered cubic crystal structure of the …


Tuning The Magnetostructural Phase Transition In Ferh Nanocomposites, Radhika Barua, Xiujuan Jiang, Felix Jiménez-Villacorta, J. E. Shield, D. Heiman, L. H. Lewis Aug 2013

Tuning The Magnetostructural Phase Transition In Ferh Nanocomposites, Radhika Barua, Xiujuan Jiang, Felix Jiménez-Villacorta, J. E. Shield, D. Heiman, L. H. Lewis

Laura H. Lewis

Effects of nanostructuring on the magnetostructural response of the near-equiatomic FeRh phase were investigated in nanocomposite materials synthesized by rapid solidification and subsequent annealing of an alloy of nominal atomic composition (FeRh)5Cu95. Transmission electron microscopy studies confirm attainment of a phase-separated system of nanoscaled (∼10–15 nm diameter) precipitates, consistent with FeRh embedded in a Cu matrix. These nanoprecipitates are crystallographically aligned with the coarse-grained Cu matrix and possess an L10-type (CuAu 1) structure, in contrast to the B2 (CsCl)-type structure of bulk FeRh. It is proposed that the face-centered cubic crystal structure of the Cu matrix serves as a template …


Effect Of Relative Humidity In High Temperature Oxidation Of Ceria Nanoparticles Coating On 316l Austenitic Stainless Steel, Luis Giraldez Pizarro Aug 2013

Effect Of Relative Humidity In High Temperature Oxidation Of Ceria Nanoparticles Coating On 316l Austenitic Stainless Steel, Luis Giraldez Pizarro

Theses and Dissertations

A solution of 20 wt. % colloidal dispersion of Cerium Oxide (CeO2) in 2.5% of acetic acid, was used for depositing a coating film on an austenitic stainless steel 316L. Cerium compounds have been distinguished as potential corrosion inhibitors in coatings over several alloys. The oxidation behavior of the cerium oxide coating on 316L austenitic stainless steel alloy was evaluated in dry and humid environments, the weight changes (W/A) was monitored as a function of time using a custom built Thermogravimetrical Analysis (TGA) instrument at temperatures of 750C, 800C and 850C, and different relative humidity levels (0%, 10% and 20%) …


Tuning The Magnetostructural Phase Transition In Ferh Nanocomposites, Radhika Barua, Xiujuan Jiang, Felix Jiménez-Villacorta, J. E. Shield, D. Heiman, L. H. Lewis Jul 2013

Tuning The Magnetostructural Phase Transition In Ferh Nanocomposites, Radhika Barua, Xiujuan Jiang, Felix Jiménez-Villacorta, J. E. Shield, D. Heiman, L. H. Lewis

Felix Jiménez-Villacorta

Effects of nanostructuring on the magnetostructural response of the near-equiatomic FeRh phase were investigated in nanocomposite materials synthesized by rapid solidification and subsequent annealing of an alloy of nominal atomic composition (FeRh)5Cu95. Transmission electron microscopy studies confirm attainment of a phase-separated system of nanoscaled (∼10–15 nm diameter) precipitates, consistent with FeRh embedded in a Cu matrix. These nanoprecipitates are crystallographically aligned with the coarse-grained Cu matrix and possess an L10-type (CuAu 1) structure, in contrast to the B2 (CsCl)-type structure of bulk FeRh. It is proposed that the face-centered cubic crystal structure of the Cu matrix serves as a template …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …


Tem Analysis As A Tooll For Toxicology Assessment Of Occupational Exposure To Airborne Nanoparticles From Welding, João F. Gomes Jan 2013

Tem Analysis As A Tooll For Toxicology Assessment Of Occupational Exposure To Airborne Nanoparticles From Welding, João F. Gomes

João F Gomes

No abstract provided.


Notice On A Methodology For Characterizing Emissions Of Ultrafine Particles/Nanoparticles In Microenvironments, João F. Gomes Jan 2013

Notice On A Methodology For Characterizing Emissions Of Ultrafine Particles/Nanoparticles In Microenvironments, João F. Gomes

João F Gomes

No abstract provided.


Lanthanum Halide Nanoparticle Scintillators For Nuclear Radiation Detection, Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O’Brien, Daniel Robert Lowe, Zhitao Kang, Hisham Menkara, Vivek V. Nagarkar Jan 2013

Lanthanum Halide Nanoparticle Scintillators For Nuclear Radiation Detection, Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O’Brien, Daniel Robert Lowe, Zhitao Kang, Hisham Menkara, Vivek V. Nagarkar

Mechanical Engineering Faculty Research

Nanoparticles with sizesscintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.


Reactive Self-Heating Model Of Aluminum Spherical Nanoparticles, Karen S. Martirosyan, Maxim Zyskin Jan 2013

Reactive Self-Heating Model Of Aluminum Spherical Nanoparticles, Karen S. Martirosyan, Maxim Zyskin

Physics and Astronomy Faculty Publications and Presentations

Aluminum-oxygen reaction is important in highly energetic and high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based mechanism. We present a rapid oxidation model of a spherical aluminum nanoparticle, using Cabrera-Mott moving boundary mechanism, and taking self-heating into account. In our model, electric potential solves the nonlinear Poisson equation. In contrast with the Coulomb potential, a “double-layer” type solution for the potential and self-heating leads to enhanced oxidation rates. At maximal reaction temperature of 2000 C, our model predicts …


Plasmonic-Based High Temperature Chemical Sensing Using Gold Nanoparticles Embedded In Metal Oxide Thin Films, Nicholas Joy Jan 2013

Plasmonic-Based High Temperature Chemical Sensing Using Gold Nanoparticles Embedded In Metal Oxide Thin Films, Nicholas Joy

Legacy Theses & Dissertations (2009 - 2024)

Thin metal oxide films embedded with Au nanoparticles (AuNPs) have been investigated as high temperature localized surface plasmon resonance (LSPR) based sensing materials to monitor H2, CO, and NO2 at a temperature of 500°C. Applications for this technology include turbine engines as well as other combustion environments where it is important to monitor emission gases for both regulatory purposes as well as combustion control. These high temperature applications, which may be oxidizing or reducing in nature, present challenges to sensor reliability and selectivity, and have therefore necessitated the development of novel sensing devices. While there has been …


Nb Doped Tio2 As A Cathode Catalyst Support Material For Polymer Electrolyte Membrane Fuel Cells, Alexander William O'Toole Jan 2013

Nb Doped Tio2 As A Cathode Catalyst Support Material For Polymer Electrolyte Membrane Fuel Cells, Alexander William O'Toole

Legacy Theses & Dissertations (2009 - 2024)

In order to reduce the emissions of greenhouse gases and reduce dependence on the use of fossil fuels, it is necessary to pursue alternative sources of energy. Transportation is a major contributor to the emission of greenhouse gases due to the use of fossil fuels in the internal combustion engine. To reduce emission of these pollutants into the atmosphere, research is needed to produce alternative solutions for vehicle transportation. Low temperature polymer electrolyte membrane fuel cells are energy conversion devices that provide an alternative to the internal combustion engine, however, they still have obstacles to overcome to achieve large scale …