Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Nanoscience and Nanotechnology

Study On The Electrochemical Behaviors Of Gc Electrode Modified With Carbon Nanotube-Polyelectrolytes And Its Application For Rutin Detection, Liang Hua, Xia-Qin Wu, Rong Wang Aug 2011

Study On The Electrochemical Behaviors Of Gc Electrode Modified With Carbon Nanotube-Polyelectrolytes And Its Application For Rutin Detection, Liang Hua, Xia-Qin Wu, Rong Wang

Journal of Electrochemistry

The electrochemical behaviors of rutin and ascorbic acid at single-wall carbon nanotube and polyelectrolytes (dimethyl-diallylammonium chloride, PDDA) film modified glassy carbon electrode was investigated. The cyclic voltammetric results showed that electron transfer of rutin at PDDA/SWCNTs/GC modified electrode is an adsorption-controlled process. The separation of oxidation peak potentials of rutin and ascorbic acid was more than 200 mV. The rutin concentration in the presence of AA were detected by differential pulse voltammetry (DPV). The experimental results indicated that the PDDA/SWCNTs/GC modified electrode can be used for the detection of rutin in the presence of high concentration of AA. The DPV …


On Developing Novel Energy-Relates Nanostructured Materials By Atomic Layer Deposition, Xiangbo Meng Aug 2011

On Developing Novel Energy-Relates Nanostructured Materials By Atomic Layer Deposition, Xiangbo Meng

Electronic Thesis and Dissertation Repository

ABSTRACT

This thesis presents the fabrication of a series of novel nanostructured materials using atomic layer deposition (ALD). In contrast to traditional methods including chemical vapor deposition (CVD), physical vapor deposition (PVD), and solution-based processes, ALD benefits the synthesis processes of nanostructures with many unrivalled advantages such as atomic-scale control, low temperature, excellent uniformity and conformality. Depending on the employed precursors, substrates, and temperatures, the ALD processes exhibited different characteristics. In particular, ALD has capabilities in fine-tuning compositions and structural phases. In return, the synthesis and the resultant nanostructured materials show many novelties.

This thesis covers ALD processes of four …


Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci Jun 2011

Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Carbon nanotubes are extremely sensitive to the molecular species in the environment and hence require a proper passivation technique to isolate them against environmental variations for the realization of reliable nanoelectronic devices. In this paper, we demonstrate a parylene-C passivation approach for CNT thin film transistors fabricated on a flexible substrate. The CNT transistors are encapsulated with 1 and 3 μm thick parylene-C coatings, and the transistor characteristics are investigated before and after passivation. Our findings indicate that thin parylene-C films can be utilized as passivation layers for CNT transistors and this versatile technique can be readily applied for the …


Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci Jun 2011

Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci

Ahmed A. Busnaina

Carbon nanotubes are extremely sensitive to the molecular species in the environment and hence require a proper passivation technique to isolate them against environmental variations for the realization of reliable nanoelectronic devices. In this paper, we demonstrate a parylene-C passivation approach for CNT thin film transistors fabricated on a flexible substrate. The CNT transistors are encapsulated with 1 and 3 μm thick parylene-C coatings, and the transistor characteristics are investigated before and after passivation. Our findings indicate that thin parylene-C films can be utilized as passivation layers for CNT transistors and this versatile technique can be readily applied for the …


Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Don Heiman, Yung Joon Jung, Latika Menon Jun 2011

Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Don Heiman, Yung Joon Jung, Latika Menon

Yung Joon Jung

Highly disordered multiwalled carbon nanotubes of large outer diameter (~60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet Dokmeci Jun 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet Dokmeci

Sinan Müftü

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and was hysteresis-free.


Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Don Heiman, Yung Jung, Latika Menon Jun 2011

Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Don Heiman, Yung Jung, Latika Menon

Latika Menon

Highly disordered multiwalled carbon nanotubes of large outer diameter (~60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer Jun 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Ahmed A. Busnaina

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer May 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Nicol E. McGruer

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci May 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci

Yung Joon Jung

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and was hysteresis-free.


Parallel Arrays Of Individually Addressable Single-Walled Carbon Nanotube Field-Effect Transistors, Sarah Lastella, Govind Mallick, Raymond Woo, Shashi Karna, David Rider, Ian Manners, Yung-Joon Jung, Chang Ryu, Pulickel Ajayan May 2011

Parallel Arrays Of Individually Addressable Single-Walled Carbon Nanotube Field-Effect Transistors, Sarah Lastella, Govind Mallick, Raymond Woo, Shashi Karna, David Rider, Ian Manners, Yung-Joon Jung, Chang Ryu, Pulickel Ajayan

Yung Joon Jung

High-throughput field-effect transistors (FETs) containing over 300 disentangled, high-purity chemical-vapor-deposition-grown single-walled carbon nanotube (SWNT) channels have been fabricated in a three-step process that creates more than 160 individually addressable devices on a single silicon chip. This scheme gives a 96% device yield with output currents averaging 5.4 mA and reaching up to 17 mA at a 300 mV bias. Entirely semiconducting FETs are easily realized by a high current selective destruction of metallic tubes. The excellent dispersity and nearly-defect-free quality of the SWNT channels make these devices also useful for nanoscale chemical and biological sensor applications.


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer May 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Yung Joon Jung

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci May 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet R. Dokmeci

Mehmet R. Dokmeci

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and was hysteresis-free.


Electrocatalytic Oxidation Of Hydrazine At Rutin Carbon Nanotubes Modified Electrode, Hong-Fang Zhang, Qing-Lin Sheng, Jian-Bin Zheng Feb 2011

Electrocatalytic Oxidation Of Hydrazine At Rutin Carbon Nanotubes Modified Electrode, Hong-Fang Zhang, Qing-Lin Sheng, Jian-Bin Zheng

Journal of Electrochemistry

The electrochemical behavior and electrocatalytic oxidation of hydrazine on rutin multiwall carbon nanotubes modified glassy carbon electrode were studied by cyclic voltammetry.The experimental results indicated that the electrode exhibits good electrocatalytic activity to hydrazine at a reduced oxidation potential of 262 mV.The amperometric response of the modified electrode showed linear increase after successive addition of hydrazine in the concentration range of 2.5×10-6~1.0×10-4 mol·L-1 with a detection limit of 5×10-7 mol·L-1.


Synthesis, Processing And Characterization Of Silicon-Based Templated Nanowires, Jae Ho Lee Jan 2011

Synthesis, Processing And Characterization Of Silicon-Based Templated Nanowires, Jae Ho Lee

Legacy Theses & Dissertations (2009 - 2024)

Semiconductor and metallic nanowires have attracted substantial attention due to their wide variety of applications, ranging from nanoelectronics to energy storage devices. In particular, self-assembled silicon nanowires (SiNWs) may be an attractive alternative to conventionally processed planar silicon since SiNWs can potentially function as both the switch (i.e. transistor) and local interconnect (e.g. metal silicide nanowire) to form an inherently integrated nanoelectronic system. Also, hierarchical (branched) nanowire systems hold potential for catalysts or porous electrode applications for energy applications