Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

2011

Selected Works

Contact resistance

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Contact Resistance Study Of Noble Metals And Alloy Films Using A Scanning Probe Microscope Test Station, Lei Chen, H. Lee, Z. J. Guo, Nicol E. Mcgruer, K. W. Gilbert, S. Mall, Kevin D. Leedy, George G. Adams May 2011

Contact Resistance Study Of Noble Metals And Alloy Films Using A Scanning Probe Microscope Test Station, Lei Chen, H. Lee, Z. J. Guo, Nicol E. Mcgruer, K. W. Gilbert, S. Mall, Kevin D. Leedy, George G. Adams

George G. Adams

The proper selection of electrical contact materials is one of the critical steps in designing a metal contact microelectromechanical system (MEMS) switch. Ideally, the contact should have both very low contact resistance and high wear resistance. Unfortunately this combination cannot be easily achieved with the contact materials currently used in macroswitches because the available contact force in microswitches is generally insufficient (less than 1 mN) to break through nonconductive surface layers. As a step in the materials selection process, three noble metals, platinum (Pt), rhodium (Rh), ruthenium (Ru), and their alloys with gold (Au) were deposited as thin films on …


Contact Resistance Study Of Noble Metals And Alloy Films Using A Scanning Probe Microscope Test Station, Lei Chen, H. Lee, Z. J. Guo, Nicol E. Mcgruer, K. W. Gilbert, S. Mall, Kevin D. Leedy, George G. Adams May 2011

Contact Resistance Study Of Noble Metals And Alloy Films Using A Scanning Probe Microscope Test Station, Lei Chen, H. Lee, Z. J. Guo, Nicol E. Mcgruer, K. W. Gilbert, S. Mall, Kevin D. Leedy, George G. Adams

Nicol E. McGruer

The proper selection of electrical contact materials is one of the critical steps in designing a metal contact microelectromechanical system (MEMS) switch. Ideally, the contact should have both very low contact resistance and high wear resistance. Unfortunately this combination cannot be easily achieved with the contact materials currently used in macroswitches because the available contact force in microswitches is generally insufficient (less than 1 mN) to break through nonconductive surface layers. As a step in the materials selection process, three noble metals, platinum (Pt), rhodium (Rh), ruthenium (Ru), and their alloys with gold (Au) were deposited as thin films on …