Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

2009

MOBILITY

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Observation Of Quantum-Hall Effect In Gated Epitaxial Graphene Grown On Sic (0001), T Shen, J J. Gu, M Xu, Michael Bolen, Michael A. Capano, L Engel, P. D. Ye Oct 2009

Observation Of Quantum-Hall Effect In Gated Epitaxial Graphene Grown On Sic (0001), T Shen, J J. Gu, M Xu, Michael Bolen, Michael A. Capano, L Engel, P. D. Ye

Birck and NCN Publications

Epitaxial graphene films examined were formed on the Si-face of semi-insulating 4H-SiC substrates by a high temperature sublimation process. A high-k gate stack on the epitaxial graphene was realized by inserting a fully oxidized nanometer thin aluminum film as a seeding layer, followed by an atomic-layer deposition process. The electrical properties of epitaxial graphene films are retained after gate stack formation without significant degradation. At low temperatures, the quantum-Hall effect in Hall resistance is observed along with pronounced Shubnikov-de Haas oscillations in diagonal magnetoresistance of gated epitaxial graphene on SiC (0001).


Observation Of Quantum-Hall Effect In Gated Epitaxial Graphene Grown On Sic (0001), T Shen, J J. Gu, Y Q. Wu, M L. Bolen, Michael A. Capano, L W. Engel, P. D. Ye Oct 2009

Observation Of Quantum-Hall Effect In Gated Epitaxial Graphene Grown On Sic (0001), T Shen, J J. Gu, Y Q. Wu, M L. Bolen, Michael A. Capano, L W. Engel, P. D. Ye

Birck and NCN Publications

Epitaxial graphene films examined were formed on the Si-face of semi-insulating 4H-SiC substrates by a high temperature sublimation process. A high-k gate stack on the epitaxial graphene was realized by inserting a fully oxidized nanometer thin aluminum film as a seeding layer, followed by an atomic-layer deposition process. The electrical properties of epitaxial graphene films are retained after gate stack formation without significant degradation. At low temperatures, the quantum-Hall effect in Hall resistance is observed along with pronounced Shubnikov-de Haas oscillations in diagonal magnetoresistance of gated epitaxial graphene on SiC (0001).