Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern Dec 2018

Radiolabeled Nanohydroxyapatite As A Platform For The Development Of New Pet Imaging Agents, Stacy Lee Queern

Arts & Sciences Electronic Theses and Dissertations

Positron emission tomography (PET) imaging utilizes drugs labeled with positron emitters to target and evaluate different biological processes occurring in the body. Tailoring medicine to the individual allows for higher quality of care with better diagnosis and treatment and is a key purpose for advancing research into developing new platforms for PET imaging agents. A PET nuclide of high interest for the development of these agents is 89Zr. This can be attributed to the long half-life of 3.27 days and low positron energy of 89Zr.

In this work, we developed a production method for 89Zr using Y sputtered coins that …


From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson Apr 2018

From Flasks To Applications: Design And Optimization Of Giant Quantum Dots Using Traditional And Automated Synthetic Methods, Christina J. Hanson

Nanoscience and Microsystems ETDs

Semiconducting nanocrystals, also known as quantum dots (QDs), that emit light with near-unity quantum yield and are extremely photostable are attractive options as down-conversion and direct electricity-to-light materials for a variety of applications including solid-state lighting, display technologies, bio-imaging and optical tracking. Standard QDs with a core/thin shell structure display fluorescence intermittency (blinking) and photobleaching when exposed to prolonged room temperature excitation for single dot measurements, as well as significant reabsorption and energy transfer when densely packed into polymers or at high solution concentrations.

We have developed thick shell “giant” QDs (gQDs), ultra-stable photon sources both at the ensemble and …


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr Mar 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr

Dissertations

Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4and NaAlH4indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Development Of A Liquid Contacting Method For Investigating Photovoltaic Properties Of Pbs Quantum Dot Solids, Vitalii Alekseevich Dereviankin Feb 2018

Development Of A Liquid Contacting Method For Investigating Photovoltaic Properties Of Pbs Quantum Dot Solids, Vitalii Alekseevich Dereviankin

Dissertations and Theses

Photovoltaic (PV) devices based on PbS quantum dot (QD) solids demonstrate high photon-to-electron conversion yields. However, record power conversion efficiencies remain limited mainly due to bulk and interfacial defects in the light absorbing material (QD solids). Interfacial defects can be formed when a semiconductor, such as QD solid, is contacted by another material and may predetermine the semiconductor/metal or semiconductor/metal-oxide junction properties. The objective of the work described in this dissertation was set to explore whether electrochemical contacting using liquid electrolytes can provide sufficient means of contacting the QD solids to investigate their PV performance without introducing the unwanted interfacial …


Carbazole Based Multifunctional Dopamine Agonists And Related Molecules As Potential Symptomatic And Disease Modifying Therapeutic Agents For Parkinson’S Disease, Asma S.Mohamed Elmabruk Jan 2018

Carbazole Based Multifunctional Dopamine Agonists And Related Molecules As Potential Symptomatic And Disease Modifying Therapeutic Agents For Parkinson’S Disease, Asma S.Mohamed Elmabruk

Wayne State University Dissertations

Parkinson’s disease (PD) is a progressive neurodegenerative disease that develops from gradual depletion of dopamine (DA) and dopaminergic neurons in the substantia nigra pars compacta (SNc) with the accumulation of intraneuronal proteinaceous matter named as Lewy bodies. The four cardinal symptoms associated with PD are tremor, rigidity, bradykinesia, and postural instability. Although the exact mechanism and etiology of PD are not fully understood, several factors have been implicated in the pathogenesis and progression of PD including protein aggregation, oxidative stress, mitochondrial dysfunction, environmental, and genetic factors.

The current therapy of Parkinson’s disease is categorized into four classes: levodopa, DA agonists, …


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …


Fundamental Studies Of Chemical Stability And Carrier Process In Hybrid Perovskite Materials, Jue Gong Jan 2018

Fundamental Studies Of Chemical Stability And Carrier Process In Hybrid Perovskite Materials, Jue Gong

Graduate Research Theses & Dissertations

This dissertation comprehensively studies the optoelectronic properties of organic-inorganic hybrid perovskites to fundamentally answer their foundations of outstanding performance on solar cells, photodetectors, nanowire lasers and other optoelectronic applications. Specifically, a novel type of charge carrier-lattice interaction was discovered in perovskite methylammonium lead iodide (CH3NH3PbI3), where photoluminescence lifetime of photoinduced carriers is strongly dependent on the rotational frequency of CH3NH3+, as modulated via substitution of hydrogens with deuterium atoms in the organic cation. In addition, two-dimensional Ruddlesden-Popper perovskite (CH3NH3)2Pb(SeCN)2I2 was first synthesized and characterized in the field, and its photoluminescence properties were systematically examined. The existence of intensive photoluminescence peak …


Plasmon-Enhanced Optical Sensing By Engineering Metallic Nanostructures, Peng Zheng Jan 2018

Plasmon-Enhanced Optical Sensing By Engineering Metallic Nanostructures, Peng Zheng

Graduate Theses, Dissertations, and Problem Reports

The world’s booming population projected to reach 10 billion by 2050 causes enormous stresses on environmental safety, food supply, and healthcare, which in return threatens human civilizations. One of the most promising solutions lies at innovating point-of-care (POC) sensing technologies to conduct detection of environmental hazards, monitoring of food safety, and early diagnosis of diseases in a timely and accurate manner. The discovery of surface-enhanced spectroscopy in the 1970s has significantly stimulated research on light-matter interaction which gives rise to enhanced optical phenomena such as surface-enhanced Raman scattering (SERS), plasmon-enhanced fluorescence (PEF), and particularly, they have found enormous applications in …