Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

PDF

Self-assembly

Boise State University

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Dreams Of Molecular Beams: Indium Gallium Arsenide Tensile-Strained Quantum Dots And Advances Towards Dynamic Quantum Dots (Moleculare Radiorum Somnia: Indii Gallii Arsenicus Tensa Quanta Puncta Et Ad Dinamicae Quantae Puntae Progressus), Kevin Daniel Vallejo Dec 2021

Dreams Of Molecular Beams: Indium Gallium Arsenide Tensile-Strained Quantum Dots And Advances Towards Dynamic Quantum Dots (Moleculare Radiorum Somnia: Indii Gallii Arsenicus Tensa Quanta Puncta Et Ad Dinamicae Quantae Puntae Progressus), Kevin Daniel Vallejo

Boise State University Theses and Dissertations

Through the operation of a molecular beam epitaxy (MBE) machine, I worked on developing the homoepitaxy of high quality InAs with a (111)A crystallographic orientation. By tuning substrate temperature, we obtained a transition from a 2D island growth mode to step- ow growth. Optimized MBE parameters (substrate temperature = 500 °C, growth rate = 0.12 ML/s and V/III ratio ⩾ 40) lead to growth of extremely smooth InAs(111)A films, free from hillocks and other 3D surface imperfections. We see a correlation between InAs surface smoothness and optical quality, as measured by photoluminescence spectroscopy. This work establishes InAs(111)A as a platform …


Tensile-Strained Germanium Quantum Dots Grown On Indium Aluminum Arsenide (111)A And (110) By Molecular Beam Epitaxy, Kathryn Eva Sautter May 2021

Tensile-Strained Germanium Quantum Dots Grown On Indium Aluminum Arsenide (111)A And (110) By Molecular Beam Epitaxy, Kathryn Eva Sautter

Boise State University Theses and Dissertations

Molecular beam epitaxy (MBE) enables the growth of semiconductor nanostructures known as tensile-strained quantum dots (TSQDs). The highly tunable nature of TSQD properties means that they are of interest for a wide variety of applications including for infrared (IR) lasers and light-emitting diodes (LEDs), improved tunnel junction efficiency in multijunction solar cell technology, quantum key encryption, and entangled photon emission. In this project, I focus on one of the most technologically important materials, germanium (Ge). Ge has a high gain coefficient, high electron mobility, and low band gap: all excellent properties for optoelectronic applications. Until recently, these technological advantages were …


Design, Synthesis, And Characterization Of Nanoscale Optical Devices Using Dna Directed Self-Assembly, William Peter Klein Dec 2016

Design, Synthesis, And Characterization Of Nanoscale Optical Devices Using Dna Directed Self-Assembly, William Peter Klein

Boise State University Theses and Dissertations

Near-field energy transfer has great potential for use in nanoscale communications, biosensing, and light harvesting photonic devices. However, the light collecting and energy transferring efficiency of current devices is poor, resulting in few commercially available applications. Current human-made light harvesting devices lack the benefits of natural selection. Natural systems are typically highly optimized and highly efficient. For example, transfer efficiency in photosynthesis is greater than 90%.

In this work, two classes of optical devices were designed, synthesized, and characterized: Plasmonic waveguides and FRET-based photonic devices. In the case of plasmonic waveguides, a multi-scaffold DNA origami synthesis method was developed to …