Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Investigating The Antitumor Effects Of A Dsrna-Nanoparticle Complex In An In Vitro Ovarian Cancer Model, Aaron Lewis Jan 2021

Investigating The Antitumor Effects Of A Dsrna-Nanoparticle Complex In An In Vitro Ovarian Cancer Model, Aaron Lewis

Theses and Dissertations (Comprehensive)

An estimated 1 in 70 women will be diagnosed with ovarian cancer in their lifetime. Despite advanced detection and treatment methods, it remains a silent killer with an expected survival rate of 50%. A developing method in cancer treatment is the use of compounds that stimulate the immune system to aid in the body's fight against the disease. This project focused on the use of the potent immune stimulant double-stranded RNA (dsRNA), commercially available as polyinosinic:polycytidylic acid, poly(I:C), to induce cytotoxicity in two ovarian cancer cell lines; SKOV-3 and OVCAR-3. Some challenges exist with the delivery of dsRNA due to …


A Micro-Nano Particle System For Sustained Drug Release In Lung Cancer Therapy, Heta N. Jadhav Mar 2020

A Micro-Nano Particle System For Sustained Drug Release In Lung Cancer Therapy, Heta N. Jadhav

USF Tampa Graduate Theses and Dissertations

Lung cancer remains the leading cause of cancer-related mortality in men and women worldwide (National Comprehensive Cancer Network). Hence, developing an effective new therapy to treat lung cancer is under intense investigation. Specifically, the sustained release of a drug in lung tumors is critically important. Previous studies at the USF have shown that telmisartan exhibits synergistic properties when combined with Actinomycin-D for lung cancer treatment. The objective of this study is to develop a novel micro/nano system consisting of lipids and chitosan polymers that would be able to deliver Tel directly to the lungs and release its payloads in a …


Investigation Of The Ms2 Bacteriophage Capsid As An Mri-Capable, Brain-Targeted Nanoparticle Platform, Stephanie M. Curley Jan 2018

Investigation Of The Ms2 Bacteriophage Capsid As An Mri-Capable, Brain-Targeted Nanoparticle Platform, Stephanie M. Curley

Legacy Theses & Dissertations (2009 - 2024)

Novel methods are needed to traverse the blood-brain barrier (BBB) and deliver drugs to specific targets in the brain. To this end, MS2 bacteriophage was explored as a multifunctional transport and targeting vector. The MS2 capsid exterior was modified with two different targeting moieties for delivery across the BBB and targeting specific regions of interest in the brain. Successful modification of MS2 capsids with a brain targeting peptide and NMDAR2D-targeting antibody was confirmed by immunoblotting and fluorescence detection. To measure transport efficiency of MS2 particles across an in vitro BBB model, a highly sensitive RT-qPCR protocol was developed and implemented. …


Exposure Assessment And Risk Management Of Engineered Nanoparticles : Investigation In Semiconductor Wafer Processing, Michele Shepard Jan 2014

Exposure Assessment And Risk Management Of Engineered Nanoparticles : Investigation In Semiconductor Wafer Processing, Michele Shepard

Legacy Theses & Dissertations (2009 - 2024)

Engineered nanomaterials (ENMs) are currently used in hundreds of commercial products and industrial processes, with more applications being investigated. Nanomaterials have unique properties that differ from bulk materials. While these properties may enable technological advancements, the potential risks of ENMs to people and the environment are not yet fully understood. Certain low solubility nanoparticles are more toxic than their bulk material, such that existing occupational exposure limits may not be sufficiently protective for workers. Risk assessments are currently challenging due to gaps in data on the numerous emerging materials and applications as well as method uncertainties and limitations.


Structural Basis Of Substrate Recognition In Thimet Oligopeptidase And Development Of Nanoparticles For Therapeutic Enzyme Delivery, Jonathan Mark Wagner Jan 2012

Structural Basis Of Substrate Recognition In Thimet Oligopeptidase And Development Of Nanoparticles For Therapeutic Enzyme Delivery, Jonathan Mark Wagner

Theses and Dissertations--Molecular and Cellular Biochemistry

Neuropeptidases are responsible for degradation of signaling peptides in the central nervous system and periphery. Some neuropeptidases have also been shown to play a role as part of the cell’s hydrolytic machinery responsible for breaking down proteins and peptides into amino acids, and these enzymes therefore influence small peptide availability for antigen presentation. A better understanding of how neuropeptidases recognize their substrates could lead to therapeutics that modulate the activity of these important enzymes. Alternatively, re-engineering these enzymes to selectively hydrolyze undesirable peptides could make them attractive as therapeutics themselves. A key question in understanding the activity of these enzymes …