Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

A Python Implementation Of The Quasi-Harmonic Approximation: Ab-Initio Study Of The Thermoelastic Properties Of Magnesium Oxide And Calcium Oxide, Adewumi Bakare Jun 2022

A Python Implementation Of The Quasi-Harmonic Approximation: Ab-Initio Study Of The Thermoelastic Properties Of Magnesium Oxide And Calcium Oxide, Adewumi Bakare

Dissertations, Theses, and Capstone Projects

When heated up, materials change volume, typically they expand, and they also change their elastic properties, typically by softening. Computational methods to calculate materials properties at finite temperature are needed to compensate for the lack of experimental data, as well as to predict materials properties at conditions difficult to be reached in experimental labs. In this research project, I designed a set of Python codes implementing a quasi-harmonic approximation (QHA) method to calculate thermodynamic functions at constant volume, equation of state, and the isothermal Bulk modulus of cubic materials. To validate the new computational tools, this implementation of QHA has …


Electro-Chemo-Mechanics Of The Interfaces In 2d-3d Heterostructure Electrodes, Vidushi Sharma Dec 2021

Electro-Chemo-Mechanics Of The Interfaces In 2d-3d Heterostructure Electrodes, Vidushi Sharma

Dissertations

Unique heterostructure electrodes comprising two-dimensional (2D) materials and bulk three dimensional (3D) high-performance active electrodes are recently synthesized and experimentally tested for their electrochemical performance in metal-ion batteries. Such electrodes exhibit long cycle life while they also retain high-capacity inherent to the active electrode. The role of 2D material is to provide a supportive mesh that allows buffer space for volume expansions upon ion intercalation in the active material and establishes a continuous electronic contact. Therefore, the binding strength between both materials is crucial for the success of such electrodes. Furthermore, battery cycles may bring about phase transformations in the …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Predicting Structures And Properties Of Transition Metal Dichalcogenide Alloys Using Density Functional Theory, Lucas R. Bruzgulis May 2016

Predicting Structures And Properties Of Transition Metal Dichalcogenide Alloys Using Density Functional Theory, Lucas R. Bruzgulis

Nanoscale Science & Engineering (discontinued with class year 2014)

Workflows for computationally simulating transition metal dichalcogenides using density functional theoretic methods and cluster expansion were established, as implemented in the Quantum ESPRESSO and Alloy Theoretic Automated Toolkit computer codes, respectively. Effects of energy cutoff values and k-point density on convergence of DFT results were investigated for the MoS2 structure, and theoretic band structure calculations for MoS2 and WS2 were performed. The MoXW(1-X)S2 alloy system was also investigated using the maps code in the Alloy Theoretic Automated Toolkit in order to generate a composition vs energy plot. The application of Special Quasi-random Structures to further research into TMDC alloy systems …


Structural, Electronic And Catalytic Properties Of Graphene-Supported Platinum Nanoclusters, Ioanna Fampiou Nov 2014

Structural, Electronic And Catalytic Properties Of Graphene-Supported Platinum Nanoclusters, Ioanna Fampiou

Doctoral Dissertations

Carbon materials are predominantly used as catalytic supports due to their high surface area, excellent electrical conductivity, resistance to corrosion and structural stability. Graphene, a 2D monolayer of graphite, with its excellent thermal, electronic and mechanical features, has been considered a promising support material for next generation metal-graphene nanocatalysts. The main focus of this dissertation is to investigate the properties of such metal-graphene nanocomposites using computational methods, and to develop a comprehensive understanding of the experimentally observed enhanced catalytic activity of graphene-supported Platinum (Pt) clusters. In particular, we seek to understand the role of graphene supports on the ground-state morphology …