Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat Oct 2017

Skynet: Memristor-Based 3d Ic For Artificial Neural Networks, Sachin Bhat

Masters Theses

Hardware implementations of artificial neural networks (ANNs) have become feasible due to the advent of persistent 2-terminal devices such as memristor, phase change memory, MTJs, etc. Hybrid memristor crossbar/CMOS systems have been studied extensively and demonstrated experimentally. In these circuits, memristors located at each cross point in a crossbar are, however, stacked on top of CMOS circuits using back end of line processing (BOEL), limiting scaling. Each neuron’s functionality is spread across layers of CMOS and memristor crossbar and thus cannot support the required connectivity to implement large-scale multi-layered ANNs.

This work proposes a new fine-grained 3D integrated circuit technology …


High Frequency Signal Transmission In Through Silicon Via Based 3d Integrated Circuit, Min Xu Jan 2015

High Frequency Signal Transmission In Through Silicon Via Based 3d Integrated Circuit, Min Xu

Legacy Theses & Dissertations (2009 - 2024)

Through silicon vias (TSVs) enable 3-dimensional (3D) integrated circuits (ICs), which have the potential to reduce the power consumption, interconnect length and overall communication latency in modern nanoelectronics systems. High-speed signal transmission channels through stacked silicon substrates are critical for 3D heterogeneous integration. This work presents systematic analyses of fabricated 3D IC test structures. This includes test structure design, fabrication, experimental characterization, equivalent circuit modeling and full wave simulations for high-speed signal transmission of the TSV based 3D IC channels.