Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Design, Synthesis And Test Of Reversible Circuits For Emerging Nanotechnologies, Himanshu Thapliyal Jan 2011

Design, Synthesis And Test Of Reversible Circuits For Emerging Nanotechnologies, Himanshu Thapliyal

USF Tampa Graduate Theses and Dissertations

Reversible circuits are similar to conventional logic circuits except that they are built from reversible gates. In reversible gates, there is a unique, one-to-one mapping between the inputs and outputs, not the case with conventional logic. Also, reversible gates require constant ancilla inputs for reconfiguration of gate functions and garbage outputs that help in keeping reversibility. Reversible circuits hold promise in futuristic computing technologies like quantum computing, quantum dot cellular automata, DNA computing, optical computing, etc. Thus, it is important to minimize parameters such as ancilla and garbage bits, quantum cost and delay in the design of reversible circuits.

The …


Magneto-Dielectric Polymer Nanocomposite Engineered Substrate For Rf And Microwave Antennas, Cesar A. Morales Jan 2011

Magneto-Dielectric Polymer Nanocomposite Engineered Substrate For Rf And Microwave Antennas, Cesar A. Morales

USF Tampa Graduate Theses and Dissertations

This dissertation presents the first reported systematic investigation on the implementation of multilayer patch antennas over Fe3O4-based polymer nanocomposite (PNC) magneto-dielectric substrates. The PNC substrate is created by the monodispersion of Fe3O4 nanopthesiss, with mean size of 7.5nm, in a polymeric matrix of Polydimethylsiloxane (PDMS).

Recently, magneto-dielectric substrates have been proposed by several researchers as a means for decreasing the size and increasing the bandwidth of planar antennas. Nevertheless, factors such as high loss and diminished control over magnetic and dielectric properties have hindered the optimal performance of antennas. In addition, the incompatibility and elevated complexity prevents integration of conventional …


Fabrication And Characterization Of Electrospun Cactus Mucilage Nanofibers, Yanay Pais Jan 2011

Fabrication And Characterization Of Electrospun Cactus Mucilage Nanofibers, Yanay Pais

USF Tampa Graduate Theses and Dissertations

This work seeks to fabricate, optimize, and characterize nanofibers of cactus Opuntia ficus-indica mucilage and Poly (vinyl alcohol) (PVA) by electrospinning. Mucilage is a neutral mixture of sugars produced by cactus and PVA is a non-toxic, water-soluble, synthetic polymer, which is widely used as a co-spinning agent for polymers. Mucilage was extracted from the cactus pad and prepared for electrospinning by mixing with acetic acid. Two types of PVA were used differentiating in high and low molecular weights. Concentrations of PVA were varied to find an adequate threshold for fiber formation. Changing the ratio of PVA to cactus mucilage produced …


Sub-Cooled Pool Boiling Enhancement With Nanofluids, Elliott Charles Rice Jan 2011

Sub-Cooled Pool Boiling Enhancement With Nanofluids, Elliott Charles Rice

USF Tampa Graduate Theses and Dissertations

Phase-change heat transfer is an important process used in many engineering thermal designs. Boiling is an important phase change phenomena as it is a common heat transfer process in many thermal systems. Phase change processes are critical to thermodynamic cycles as most closed loop systems have an evaporator, in which the phase change process occurs. There are many applications/processes in which engineers employ the advantages of boiling heat transfer, as they seek to improve heat transfer performance. Recent research efforts have experimentally shown that nanofluids can have significantly better heat transfer properties than those of the pure base fluids, such …


Thermophysical Characterization Of Nanofluids Through Molecular Dynamic Simulations, John Shelton Jan 2011

Thermophysical Characterization Of Nanofluids Through Molecular Dynamic Simulations, John Shelton

USF Tampa Graduate Theses and Dissertations

Using equilibrium molecular dynamics simulations, an analysis of the key thermophysical properties critical to heat transfer processes is performed. Replication of thermal conductivity and shear viscosity observations found in experimental investigations were performed using a theoretical nanopthesis-fluid system and a novel colloid-fluid interaction potential to investigate the key nanofluid parameters. Analysis of both the heat current (thermal conductivity) and stress (shear viscosity) autocorrelation functions have suggested that the dominant physical mechanisms for thermal and momentum transport arises from enhancements to the longitudinal and transverse acoustic modes energy transfer brought about by the increased mass ratio of the nanopthesis to the …