Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

PDF

University of Arkansas, Fayetteville

Mechanical Engineering Undergraduate Honors Theses

Materials Science and Engineering

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Ultrasonic Wave Propagation In Copper/Graphene Metal Matrix Composites, Casey Lindbloom Dec 2019

Ultrasonic Wave Propagation In Copper/Graphene Metal Matrix Composites, Casey Lindbloom

Mechanical Engineering Undergraduate Honors Theses

Emerging metallic composite materials implanted with graphene sheets are showing immense promise, with benefits being observed with regards to mechanical, thermal, and electrical material properties. This research aims to investigate the effects on ultrasonic wave propagation in Copper/Graphene Metal Matrix Composites (Cu/Gr MMCs) with varying graphene arrangements inspired from nacre and bone nanoscale material distributions. To accomplish this, the molecular dynamics (MD) method is utilized to simulate nanoscale wave propagation on a set of Cu/Gr MMCs with differing graphene arrangements and volume percentages ranging up to 4.56%. The computational model results are then analyzed to determine the variation in energy …


Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni May 2019

Modelling Palladium Decorated Graphene Using Density Functional Theory To Analyze Hydrogen Sensing Application, Sameer Kulkarni

Mechanical Engineering Undergraduate Honors Theses

Graphene is an exciting new material with many promising applications. One such application of graphene is gas sensing, when adsorbed with transition metals, notably Palladium. Therefore, it is of paramount importance to have appropriate ab initio calculations to calculate the various properties of graphene under different adsorbates and gasses. The first step in these calculations is to have a functioning base Density Functional Theory (DFT) model of pristine graphene decorated with Palladium. The computational methods described in this paper has yielded results for pristine graphene that have been confirmed many times in previous experimental and theoretical studies. Future work needs …


Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta May 2017

Optimization Of Reduced Graphene Oxide Deposition For Hydrogen Sensing Technologies, Matthew Pocta

Mechanical Engineering Undergraduate Honors Theses

Graphene is known to be a key material for improving the performance of hydrogen sensors. High electrical conductivity, maximum possible surface area with respect to volume, and high carrier mobility are a few of the properties that make graphene ideal for hydrogen sensing applications. The problem with utilizing graphene is the difficulty in depositing uniform, thin layers onto substrate surfaces. This study examines a new method of optimizing graphene deposition by utilizing an airbrush to deposit both graphene oxide (GO) and reduced graphene oxide (rGO) onto glass substrates. The number of depositions were varied among samples to study the effect …