Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

An Investigation Of Testing Parameters On The Frictional Properties Of Patterned Core-Shell Nanostructures, Colin Phelan May 2021

An Investigation Of Testing Parameters On The Frictional Properties Of Patterned Core-Shell Nanostructures, Colin Phelan

Graduate Theses and Dissertations

Friction tests are a beneficial means to analyze the tribological characteristics and advantages of materials and textured surfaces. However, the selected test parameters can significantly influence the results. This work explores the significance of the friction testing parameters on the frictional performances of core-shell nanostructure-textured surfaces (CSNTSs). Several applied normal loads (10 μN, 100 μN, and 500 μN) and diamond counterface indenter tip radii (1 μm, 5 μm, and 20 μm) were selected for the testing of Al/diamond-like-carbon (DLC) and Al/amorphous silicon (a-Si) CSNTSs. The measured friction values of the CSNTSs were then compared to a matching Al/DLC film and …


Ultrasonic Wave Propagation In Copper/Graphene Metal Matrix Composites, Casey Lindbloom Dec 2019

Ultrasonic Wave Propagation In Copper/Graphene Metal Matrix Composites, Casey Lindbloom

Mechanical Engineering Undergraduate Honors Theses

Emerging metallic composite materials implanted with graphene sheets are showing immense promise, with benefits being observed with regards to mechanical, thermal, and electrical material properties. This research aims to investigate the effects on ultrasonic wave propagation in Copper/Graphene Metal Matrix Composites (Cu/Gr MMCs) with varying graphene arrangements inspired from nacre and bone nanoscale material distributions. To accomplish this, the molecular dynamics (MD) method is utilized to simulate nanoscale wave propagation on a set of Cu/Gr MMCs with differing graphene arrangements and volume percentages ranging up to 4.56%. The computational model results are then analyzed to determine the variation in energy …


Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang May 2018

Investigation Of Nanomaterial Based Photovoltaic Panel Packaging Materials, Xingeng Yang

Graduate Theses and Dissertations

In this research, nanomaterial-based packaging materials for photovoltaic (PV) panels are investigated. A hydrophobic/anti-reflective surface coating which not only repels water from the top glass of a PV panel but at the same time reduces its light reflectance is investigated. COMSOL simulation results indicate that taller ellipsoid rod (aspect ratio = 5) reflects less light than shorter rod (aspect ratio = 0.5) in the desired spectrum for solar energy harvest from 400nm-700nm. The addition of a polymer layer on these ellipsoid rods broadens the light incident angle from 23° to 34°, from which light can be efficiently absorbed. Based on …


Deformation Behavior Of Al/A-Si Core-Shell Nanostructures, Robert Andrew Fleming Aug 2017

Deformation Behavior Of Al/A-Si Core-Shell Nanostructures, Robert Andrew Fleming

Graduate Theses and Dissertations

Al/a-Si core-shell nanostructures (CSNs), consisting of a hemispherical Al core surrounded by a hard shell of a-Si, have been shown to display unusual mechanical behavior in response to compression loading. Most notably, these nanostructures exhibit substantial deformation recovery, even when loaded much beyond the elastic limit. Nanoindentation measurements revealed a unique mechanical response characterized by discontinuous signatures in the load-displacement data. In conjunction with the indentation signatures, nearly complete deformation recovery is observed. This behavior is attributed to dislocation nucleation and annihilation events enabled by the 3-dimensional confinement of the Al core. As the core confinement is reduced, either through …


Phase-Field Models For Simulating Physical Vapor Deposition And Microstructure Evolution Of Thin Films, James Stewart Jr. May 2016

Phase-Field Models For Simulating Physical Vapor Deposition And Microstructure Evolution Of Thin Films, James Stewart Jr.

Graduate Theses and Dissertations

The focus of this research is to develop, implement, and utilize phase-field models to study microstructure evolution in thin films during physical vapor deposition (PVD). There are four main goals to this dissertation. First, a phase-field model is developed to simulate PVD of a single-phase polycrystalline material by coupling previous modeling efforts on deposition of single-phase materials and grain evolution in polycrystalline materials. Second, a phase-field model is developed to simulate PVD of a polymorphic material by coupling previous modeling efforts on PVD of a single-phase material, evolution in multiphase materials, and phase nucleation. Third, a novel free energy functional …


Large-Scale Graphene Film Deposition For Monolithic Device Fabrication, Khaled Al-Shurman May 2015

Large-Scale Graphene Film Deposition For Monolithic Device Fabrication, Khaled Al-Shurman

Graduate Theses and Dissertations

Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors.

The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is an …


Surface Wetting And Friction Studies Of Nano-Engineered Surfaces On Copper Substrate, Julius Sheldon Morehead Dec 2011

Surface Wetting And Friction Studies Of Nano-Engineered Surfaces On Copper Substrate, Julius Sheldon Morehead

Graduate Theses and Dissertations

Nano-engineered-textures on a material surface can dramatically improve the wetting and non-wetting properties of a surface, and they also show promise to address friction issues that affect surfaces in contact. In this work, aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) was used to produce nano-textures on copper (Cu) substrates. A study was performed to examine the effects of changing the annealing conditions and a-Si thickness on nano-texture formation. The creation of various nano-topographies and chemically modifying them using octafluorocyclobutane (C4F8) was performed to control hydrophilicity, hydrophobicity, and oil affinity of nano-textured surfaces. A video-based contact angle measurement system was used …