Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Insights Into The Epitaxial Relationships Between One-Dimensional Nanomaterials And Metal Catalyst Surfaces Using Density Functional Theory Calculations, Debosruti Dutta Jun 2014

Insights Into The Epitaxial Relationships Between One-Dimensional Nanomaterials And Metal Catalyst Surfaces Using Density Functional Theory Calculations, Debosruti Dutta

USF Tampa Graduate Theses and Dissertations

This dissertation involves the study of epitaxial behavior of one-dimensional nanomaterials like single-walled carbon nanotubes and Indium Arsenide nanowires grown on metallic catalyst surfaces. It has been previously observed in our novel microplasma based CVD growth of SWCNTs on Ni-Fe bimetallic nanoparticles that changes in the metal catalyst composition was accompanied by variations in the average metal-metal bond lengths of the nanoparticle and that in turn, affected nanotube chirality distributions. In this dissertation, we have developed a very simplistic model of the metal catalyst in order to explain the nanotube growth of specific nanotube chiralities on various Ni-Fe catalyst surfaces. …


The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson Jan 2012

The Influence Of Copper Substrate Orientation On Graphene Growth, Zachary Robert Robinson

Legacy Theses & Dissertations (2009 - 2024)

This dissertation is focused on determining the influence of the copper substrate on graphene grown by \ac{CVD}. Graphene, which can be grown in single atomic layers on copper substrates, has potential applications in future electronic devices. One of the key issues for the use of graphene grown by chemical vapor deposition for device applications is the influence of defects on the transport properties of the graphene. For instance, growth on metal foil substrates results in multi-domain graphene growth because the foil substrates themselves have a variety of different surface terminations. Therefore, they don't serve as a very good template for …