Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik Jan 2019

Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik

Legacy Theses & Dissertations (2009 - 2024)

The challenge of current microelectronic architecture in transmission bandwidth and power consumption can be potentially solved by using silicon photonics technologies that are compatible with modern CMOS fabrication. One of the critical active photonic devices for Si photonics is a Si based optical modulator. Most of the reported silicon modulators rely on the free carrier plasma dispersion effect. In those cases, a weak change of the refractive index obtained by carrier accumulation, injection or depletion is utilized in a Mach-Zehnder interferometer or a microring resonator to achieve intensity modulation, rendering them difficult for chip-level implementation due to a large footprint …


Exploring Gated Nanoelectronic Devices Fabricated From 1d And 2d Materials, Prathamesh A. Dhakras Jan 2019

Exploring Gated Nanoelectronic Devices Fabricated From 1d And 2d Materials, Prathamesh A. Dhakras

Legacy Theses & Dissertations (2009 - 2024)

One and two dimensional materials are being extensively researched toward potential application as ultra-thin body channel materials. The difficulty of implementing physical doping methods in these materials has necessitated various alternative doping schemes, the most promising of which is the electrostatic gating technique due to its reconfigurability. This dissertation explores the different fundamental devices that can be fabricated and characterized by taking advantage of the electrostatic gating of individual single-walled carbon nanotubes (SWNTs), dense SWNT networks and exfoliated 2D tungsten diselenide (WSe2) flakes.


Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …