Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman Dec 2023

Advances In Cellulose Nanomaterial-Based Foams For Environmental Applications, Md Musfiqur Rahman

Electronic Theses and Dissertations

The use of metal-oxide nanoparticles adsorbents is limited to fixed-bed columns in industrial-scale water treatment applications. This limitation is commonly attributed to the tendency of nanoparticles to aggregate, the use of non-sustainable and inefficient polymeric resins as supporting materials, or a lack of adsorption capacity. Foams and aerogels derived from cellulose nanomaterials have unique characteristics, such as high porosity and low density, which enables their use in a variety of environmental applications, including water treatment. However, the overall use of cellulose nanomaterial-based foams in various environmental sectors is limited due to the high cost of production associated with time- and …


Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty May 2022

Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty

Electronic Theses and Dissertations

The development of gas sensors for detection of volatile organic compounds (VOCs) has been of interest in the sensing field for decades. To date, the use of metal nanoparticle-based chemiresistors for trace VOC detection, particularly gold nanoparticle-based sensors, is of great interest due to their high chemical stability, ease of synthesis, unique optical properties, large surface to volume ratio, and high level of conductivity. Much effort has been devoted towards gold monolayer protected clusters (Au MPCs) as chemiresistors to detect harmful VOCs. The present thesis documents the results of our efforts to exploit the advantages of functionalized Au MPCs chemiresistors …


Investigating New Methods To Develop Perovskite Solar Cells, Amani Hussain Alfaifi Jan 2020

Investigating New Methods To Develop Perovskite Solar Cells, Amani Hussain Alfaifi

Electronic Theses and Dissertations

Discovering the potential of organic-inorganic metal halide perovskites (MHP) as a harvesting material in solar cells has strongly affected the research direction in solar energy. The fascinating optical and electronic properties offered by MHP combined with tremendous effort from scientists around the world have improved the efficiency to about 25% in a decade.

In the first part of the dissertation, we studied the lamination process as a new fabrication method for producing self-encapsulated perovskite solar cells based on laminating half stacks,as opposed to the conventional layer-by-layer method. Our work focused on optimizing the lamination process of complex triple cations perovskite …


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay May 2018

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation …


Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders Dec 2017

Cellulose Nanofiber-Reinforced Impact Modified Polypropylene: Assessing Material Properties From Fused Layer Modeling And Injection Molding Processing, Jordan Elliott Sanders

Electronic Theses and Dissertations

The purpose of this research was to investigate the use of cellulose nanofibers (CNF) compounded into an impact modified polypropylene (IMPP) matrix. A IMPP was used because it shrinks less than a PP homopolymer during FLM processing. An assessment of material properties from fused layer modeling (FLM), an additive manufacturing (AM) method, and injection molding (IM) was conducted. Results showed that material property measurements in neat PP were statistically similar between IM and FLM for density, strain at yield and flexural stiffness. Additionally, PP plus the coupling agent maleic anhydride (MA) showed statistically similar results in comparison of IM and …


Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart Dec 2016

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart

Electronic Theses and Dissertations

The use of microelectronic sensors and actuators in harsh, high temperature environments, such as power plants, turbine engines, and industrial manufacturing, could greatly improve the safety, reliability, and energy efficiency of these processes. The primary challenge in implementing this technology is the breakdown and degradation of thin films used in fabricating these devices when exposed to high temperatures >800 °C and oxidizing atmospheres. Zirconium diboride, hexagonal boron nitride, and amorphous alumina are candidate materials for use as thin film sensor components due to their high melting temperatures and stable phases. Zirconium diboride thin films have metallic-like electrical conductivity and remain …


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell May 2016

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application. Specifically, …


Study Of Immobilizing Cadmium Selenide Quantum Dots In Selected Polymers For Application In Peroxyoxalate Chemiluminescence Flow Injection Analysis, Christopher S. Moore May 2013

Study Of Immobilizing Cadmium Selenide Quantum Dots In Selected Polymers For Application In Peroxyoxalate Chemiluminescence Flow Injection Analysis, Christopher S. Moore

Electronic Theses and Dissertations

Two batches of CdSe QDs with different sizes were synthesized for immobilizing in polyisoprene (PI), polymethylmethacrylate (PMMA), and low-density polyethylene (LDPE). The combinations of QDs and polymer substrates were evaluated for their analytical fit-for-use in applicable immunoassays. Hydrogen peroxide standards were injected into the flow injection analyzer (FIA) constructed to simulate enzyme-generated hydrogen peroxide reacting with bis-(2,4,6-trichlorophenyl) oxalate.

Linear correlations between hydrogen peroxide and chemilumenscent intensities yielded regression values greater than 0.9750 for hydrogen peroxide concentrations between 1.0 x 10-4 M and 1.0 x 10-1 M. The developed technique’s LOD was approximately 10 ppm. Variability of the prepared …