Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar Oct 2019

Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar

Doctoral Dissertations

Material nanostructures such as nanowires, quantum dots, and nanorings have a wide variety of applications in electronic and photonic devices among numerous others. Assembling uniformly arranged and consistently sized nanostructure patterns on solid material surfaces is a major challenge for nanotechnology. This dissertation focuses on developing predictive models capable of simulation and analysis of such nanopattern formation on bulk material and strained thin film surfaces. Single-layer atomic clusters (islands) of sizes larger than a critical size on crystalline conducting substrates undergo morphological instabilities when driven by an externally applied electric field or thermal gradient. We have conducted a systematic and …


Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein Nov 2018

Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein

USF Tampa Graduate Theses and Dissertations

Metal-organic frameworks stand at the frontiers of molecular electronic research because they combine desirable physical properties of organic and inorganic components. They are crystalline porous solids constructed by inorganic nodes coordinated to organic ligands to form 1D, 2D, or 3D structures. They possess unique characteristics such as ultrahigh surface area crystal lattices up to 10000 m2 g-1, and tunable nanoporous sizes ranging from 0.2 to 50 nm. Their unprecedented structural diversity and flexibility beyond solid state materials can lead to unique properties such as tailorable electronic and ionic conductivity which can serve as interesting platforms for a …


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …


Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez Jan 2015

Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez

Open Access Theses & Dissertations

Cadmium Telluride is a material widely used in terrestrial thin film photovoltaic applications due to its nearly ideal band gap (~1.5 eV) and high absorption coefficient. Due to its low manufacturing cost, this technology has the potential to become a significant energy resource if higher energy conversion efficiencies are achieved. However, the module efficiencies (~14%) are still far from the theoretical maximum (~30%) for this material in a single junction configuration. The reason behind this low performance is attributed to the high number of defects that are present within the device materials. The physics behind the formation mechanisms of these …


Microstructure And Property Evaluation Of Lifepo4 Thin Films For Application In Microbatteries, Jose Marcos Mares Jan 2010

Microstructure And Property Evaluation Of Lifepo4 Thin Films For Application In Microbatteries, Jose Marcos Mares

Open Access Theses & Dissertations

The shortage of fossil fuels and the requirements to produce clean, environmental friendly, efficient, and economical energy are the principal problems in the context of energy technology for current and future generations. Therefore, advanced energy storage and conversion capabilities with higher capacity and efficiency are desired. Currently, there is an enormous interest in the development of high energy density rechargeable batteries for use in domestic applications, automotive industries and portable electronic applications. The present research focuses on the development of LiFePO4 thin films for solid-state thin-film microbatteries. The present effort was performed with a specific purpose of understanding the effect …