Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Physical Sciences and Mathematics

2022

Institution
Keyword
Publication

Articles 1 - 25 of 25

Full-Text Articles in Nanoscience and Nanotechnology

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula Dec 2022

Carrier Transport Engineering In Wide Bandgap Semiconductors For Photonic And Memory Device Applications, Ravi Teja Velpula

Dissertations

Wide bandgap (WBG) semiconductors play a crucial role in the current solid-state lighting technology. The AlGaN compound semiconductor is widely used for ultraviolet (UV) light-emitting diodes (LEDs), however, the efficiency of these LEDs is largely in a single-digit percentage range due to several factors. Until recently, AlInN alloy has been relatively unexplored, though it holds potential for light-emitters operating in the visible and UV regions. In this dissertation, the first axial AlInN core-shell nanowire UV LEDs operating in the UV-A and UV-B regions with an internal quantum efficiency (IQE) of 52% are demonstrated. Moreover, the light extraction efficiency of this …


Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi Dec 2022

Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi

Arts & Sciences Electronic Theses and Dissertations

Ultrasensitive detection and quantification of soluble, secreted and cell surface-bound proteins is critical for advancing our understanding of cellular systems, enabling effective drug development, novel therapies, and bio-diagnostics. However, exiting technologies are largely limited by their sensitivity, making the detection and quantification of low-abundant proteins extremely challenging. This forms a major barrier in various fields of biology and biomedical sciences. In this work, we introduce novel cellular analysis methodologies based on plasmon-enhanced fluorescence for analyzing cell structure and probing surface and secreted proteins from cells. In the first part, we introduce plasmon-enhanced expansion microscopy and demonstrate the effectiveness of employing …


Achieving Safe Use Of Advanced Materials In Drinking Water Through Novel Nano Analytics And Enabling Electrification Using Green Catalyst, Kenneth Ray Flores Dec 2022

Achieving Safe Use Of Advanced Materials In Drinking Water Through Novel Nano Analytics And Enabling Electrification Using Green Catalyst, Kenneth Ray Flores

Open Access Theses & Dissertations

The accumulation of engineered nanomaterials (ENMs) in environmental sectors will continue to increase as more applications are discovered for their unique properties and characteristics. Additionally, the presence of nanomaterials in the environment becomes exacerbated as more consumer products containing nanoparticles are approved for use. It is debated whether the toxic effects of nanoparticles stem from the particles themselves, ionic species, or formation of secondary particles. Therefore, understanding the behavior of nanoparticles in the environment becomes key to discerning the toxicological effects of nanoparticles. Many advancements have been made with ICP-MS to understand the behavior of nanoparticles in the environmental systems, …


Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun Dec 2022

Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun

Open Access Theses & Dissertations

Scrutinizing the remarkable and tunable properties of magnetic materials at a nanoscale size "There's Plenty of Room at the Bottom..." Richard Feynman, this study attempts to find sustainable solutions to some of the deteriorating environmental, health, and energy problems the world is encountering. Due to their simple preparation, surface adaptability, and tunable magnetic and optical properties, magnetic nanoparticles have been extensively investigated in water treatment, cancer therapy, data storage, and more. However, relying on non-reusable and chemical-based treatment agents in water, complex and costly cancer treatment procedures and molecular magnets that operate far below room temperature limited those attempts from …


Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes Dec 2022

Fabrication And Characterization Of Iron-Based Catalysts For The Dehydrogenation Of Fossil Fuels, Victoria Isabel Reyes

Open Access Theses & Dissertations

For a prosperous and sustainable future, hydrogen is an encouraging solution due to its simple transition for industrial decarbonization and synergy for economic development. Paradoxically, current hydrogen production pathways release substantial amount of greenhouse gases into the atmosphere contributing to climate change. To keep up with increasing demand, hydrogen could be produced through microwave-assisted thermocatalytic dehydrogenation of fossil fuels without emitting carbon dioxide. This requires specified catalysts to meet the requirements of hydrogen yield and selectivity. The objective of the present research is to fabricate, characterize, and compare iron-based alumina (FeAl_x O_y) catalysts produced via solution combustion synthesis and iron-based …


Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi Dec 2022

Gate-Controlled Quantum Dots In Two-Dimensional Tungsten Diselenide And One-Dimensional Tellurium Nanowires, Shiva Davari Dolatabadi

Graduate Theses and Dissertations

This work focuses on the investigation of gate-defined quantum dots in two-dimensional transition metal dichalcogenide tungsten diselenide (WSe2) as a means to unravel mesoscopic physical phenomena such as valley-contrasting physics in WSe2 flakes and its potential application as qubit, as well as realizing gate-controlled quantum dots based on elementaltellurium nanostructures which may unlock the topological nature of the host material carriers such as Weyl states in tellurium nanowires.The fabrication and characterization of gate-defined hole quantum dots in monolayer and bilayer WSe2 are reported. The gate electrodes in the device design are located above and below the WSe2 nanoflakes to accumulate …


Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith Dec 2022

Development Of Nucleic Acid Diagnostics For Targeted And Non-Targeted Biosensing, Christopher William Smith

Legacy Theses & Dissertations (2009 - 2024)

The field of nucleic acid technology is rapidly expanding with new impactful discoveriesbeing made each year. Starting from the discovery of the double-helix structure, cloning, gene editing, polymerase chain reaction (PCR), CRISPR technology, and even the late mRNA vaccines; nucleic acid technology is at the forefront of improving medicine. Nucleic acid technology is extremely versatile due to its easy programmability, automated cheap synthesis, and even its catalog for numerous chemical modifications that can be used to alter structure stability. For example, the number of permutations that can be made with DNA just by altering the code for adenine (A), cytosine …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck Sep 2022

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Variations In Copper Form Exposure Differentially Modulate Zea Mays (Corn) Physiological Responses, Carolina Valdes Bracamontes Aug 2022

Variations In Copper Form Exposure Differentially Modulate Zea Mays (Corn) Physiological Responses, Carolina Valdes Bracamontes

Open Access Theses & Dissertations

In the present study, Zea mays seedlings grown under nano Cu(OH)2 (nCu), bulk Cu(OH)2 (bCu), and ionic CuSO4 (iCu) compound exposure were harvested after six days. The nutritional profile was determined to be significantly disrupted in the roots by 1000 ppm bCu treatment, resulting in a 58.7% reduction in potassium compared to the control. In the shoots, a significant decrease of manganese was observed for 10 and 1000 ppm iCu treatments with 55.7% and 64.2% reductions, respectively. The overall protein content and catalase (CAT) enzymatic activity, however, remained unaffected in either roots or shoots, while an absence of polyphenol oxidase …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi Jul 2022

Characterization Of Electrophoretic Deposited Zinc Oxide Nanopartices For The Fabrication Of Next-Generation Nanoscale Electronic Applications, Fawwaz Abduh A. Hazzazi

LSU Doctoral Dissertations

Several reports state that it is crucial to analyze nanoscale semiconductor materials and devices with potential benefits to meet the need for next-generation nanoelectronics, bio, and nanosensors. The progress in the electronics field is as significant now, with modern technology constantly evolving and a greater focus on more efficient robust optoelectronic applications. This dissertation focuses on the study and examination of the practicality of Electrophoretic Deposition (EPD) of zinc oxide (ZnO) nanoparticles (NPs) for use in semiconductor applications.

The feasibility of several synthesized electrolytes, with and without surfactants and APTES surface functionalization, is discussed. The primary objective of this study …


Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler Jun 2022

Observation And Control Of Photoemission And Electric Field Enhancement Of Plasmonic Antennas Through Photoemission Electron Microscopy, Christopher M. Scheffler

Dissertations and Theses

Photoemission electron microscopy (PEEM) is an imaging method which uses electrons excited through the photoelectric effect to characterize a sample surface with nanometer-level resolution. In PEEM, a high intensity laser excites electrons from the surface of the material and electron optics are used to form an image from the intensity and spatial distribution of the photoemission from the sample. The goal of this research was to study and maximize light confinement, which was accomplished using plasmonic nanostructures. Surface plasmons represent oscillations in the electron density of a material and can occur along the transition interface between a metal and a …


Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik May 2022

Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik

Theses and Dissertations

Advanced oxidation of organic pollutants with TiO2 photocatalysts is limited due to the wide bandgap of TiO2, 3.2 eV, which requires ultraviolet (UV) radiation. When nanosized TiO2 is modified by carbon doping, charge recombination is inhibited and the bandgap is narrowed, allowing for efficient photodegradation under visible light. Here, we propose a flame spray pyrolysis (FSP) technique to create TiO2. The facile process of FSP has been successful in preparing highly crystalline TiO2 nanoparticles. Using the same procedure to deposit TiO2 onto biochar, the photocatalyst was doped by the carbonaceous material. The morphology, crystalline and electronic structure of the FSP …


Rational Design Of Composite Nanomaterials For Water Treatment Applications, Mariana Marcos-Hernandez May 2022

Rational Design Of Composite Nanomaterials For Water Treatment Applications, Mariana Marcos-Hernandez

Open Access Theses & Dissertations

Water quantity and quality have been affected in communities all around the world due to population growth, pollution, changes in land use, and climate change. In order to cope with existing and anticipated water demands and shortages, the use of treated or reclaimed water is an ongoing alternative that has helped communities all over the world address this problem. The adaptation of nanotechnology to traditional water and wastewater treatment processes offers new opportunities in technological developments. Unique size-dependent properties such as: high surface to mass ratio, high reactivity, high sorption capacities, fast dissolution, superparamagnetism, among others, provide high-tech efficient materials …


Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain May 2022

Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain

Theses and Dissertations

Near-field scanning optical microscopy (NSOM) merges scanning probe technology with the power of high-resolution optical microscopy and provides a natural view into the nanoworld. NSOM requires tapered probes with subwavelength optical apertures and wide cone angles to efficiently channel the illumination light to the tip apex so that it can acquire optical images beyond the diffraction limit. Tapered probes with a range of cone angles can be fabricated through chemical etching of optical fibers using hydrofluoric acid (HF) by varying the etching time. Apart from their use for NSOM imaging, such optical probes can also be transformed into nanosensors by …


Towards Highly Sensitive Capacitance Measurements Of A Quantum Anomalous Hall Phase In Van Der Waal Heterostructures, Kayla Cerminara May 2022

Towards Highly Sensitive Capacitance Measurements Of A Quantum Anomalous Hall Phase In Van Der Waal Heterostructures, Kayla Cerminara

UNLV Theses, Dissertations, Professional Papers, and Capstones

One of the pioneering achievements in condensed matter physics of the 20th century is the observation of the quantum Hall e↵ect (QHE) in which the Hall resistance in a two-dimensional (2D) sample takes on quantized values in the presence of a strong perpendicular magnetic field. The precise quantization of the hall resistance to one part in a billion has provided a practical, worldwide resistance standard. A long-standing goal has been to realize a similar state of matter but without the need of a strong quantizing magnetic field. The quantum anomalous Hall e↵ect (QAHE) is such a state that is predicted …


A Versatile Python Package For Simulating Dna Nanostructures With Oxdna, Kira Threlfall May 2022

A Versatile Python Package For Simulating Dna Nanostructures With Oxdna, Kira Threlfall

Computer Science and Computer Engineering Undergraduate Honors Theses

The ability to synthesize custom DNA molecules has led to the feasibility of DNA nanotechnology. Synthesis is time-consuming and expensive, so simulations of proposed DNA designs are necessary. Open-source simulators, such as oxDNA, are available but often difficult to configure and interface with. Packages such as oxdna-tile-binding pro- vide an interface for oxDNA which allows for the ability to create scripts that automate the configuration process. This project works to improve the scripts in oxdna-tile-binding to improve integration with job scheduling systems commonly used in high-performance computing environments, improve ease-of-use and consistency within the scripts compos- ing oxdna-tile-binding, and move …


Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty May 2022

Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty

Electronic Theses and Dissertations

The development of gas sensors for detection of volatile organic compounds (VOCs) has been of interest in the sensing field for decades. To date, the use of metal nanoparticle-based chemiresistors for trace VOC detection, particularly gold nanoparticle-based sensors, is of great interest due to their high chemical stability, ease of synthesis, unique optical properties, large surface to volume ratio, and high level of conductivity. Much effort has been devoted towards gold monolayer protected clusters (Au MPCs) as chemiresistors to detect harmful VOCs. The present thesis documents the results of our efforts to exploit the advantages of functionalized Au MPCs chemiresistors …


Stability Analysis Of Delay-Driven Coupled Cantilevers Using The Lambert W-Function, Daniel Siebel-Cortopassi Apr 2022

Stability Analysis Of Delay-Driven Coupled Cantilevers Using The Lambert W-Function, Daniel Siebel-Cortopassi

USF Tampa Graduate Theses and Dissertations

A coupled delay-feedback system of two cantilevers can yield greater sensitivity than that of asingle cantilever system, with potential applications in atomic force microscopy. The Lambert W-function analysis concept for delay differential equations is used to more accurately model the behavior of specific configurations of these cantilever systems. We also use this analysis concept to find parameters which yield stability for greater parameter ranges, of the delay differential equations. The Q factor, or quality factor, is the ratio of energy stored in the system, to the energy lost per fixed oscillation/movement cycle. Having stability of the cantilevers corresponds to the …


Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony Apr 2022

Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony

USF Tampa Graduate Theses and Dissertations

Over the course of the past 80 years, semiconductor devices have become increasingly ubiquitous in everyday life.From constructing mainframes that encompassed entire rooms during the 1940s, to inventing personal computers in the 1980s, to developing progressively faster smartphones and wearable technology in the 2010s, the primary driving force behind the Digital Revolution has been increasing transistor counts, and thus computing power, via incremental improvements in optical lithography. In 1965, Intel co-founder Gordon Moore boldly predicted that the transistor density of semiconductor devices would double approximately every 18-24 months. While this prediction -- now colloquially referred to as Moore's Law -- …


Exploring Magneto-Excitons In Bulk And Mono-Layer Semiconductors Using Non-Linear Spectroscopy Techniques, Varun Mapara Mar 2022

Exploring Magneto-Excitons In Bulk And Mono-Layer Semiconductors Using Non-Linear Spectroscopy Techniques, Varun Mapara

USF Tampa Graduate Theses and Dissertations

The research in two-dimensional (2D) materials has evolved from ``traditional" quantum wells based on group III-V and II-VI semiconductors to atomically thin sheets of van der Waals materials such as 2D semiconducting Transition Metal Dichalcogenides (TMDs). These 2D materials remain a stimulating field that continues to introduce new challenges. From both a fundamental physics and technological perspective, magneto-optical spectroscopy has been an essential tool in this research field. TMDs, for example, pose the challenge of characterizing their spin-valley-resolved physics and deriving implications in quantum computation and information research. With the discovery of valley Zeeman effects, the spin-valley physics of TMDs …


Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul Feb 2022

Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul

Dissertations and Theses

CO2 emissions from the combustion of fossil fuels and other anthropogenic sources have become the main contributing factors to global warming. Chemical methods of absorbing/capturing CO2 from combustion flue gases have made it a sought-after approach in engineering emission solutions because of its simplistic and convenient operation and high absorption efficiency. The conversion of CO2 into renewable fuels and high energy density chemicals by clean and economic processes has drawn scientists' attention over the decades. The electrocatalytic conversion of CO2 using Sn-based materials has been demonstrated to be a promising method for producing formate, an important …


Synthesis And Advanced Characterization Of Energy Materials, Erik Sarnello Jan 2022

Synthesis And Advanced Characterization Of Energy Materials, Erik Sarnello

Graduate Research Theses & Dissertations

Catalysts are used in an extremely broad range of systems including everything from biological systems to industrial processes. An ideal catalyst offers robust stability and high activity. This work focuses on the synthesis and characterization of materials that show promise in the field of catalysis. Advanced synchrotron characterization techniques and unique experimental design are highlighted to provide foundation work that will provide the necessary information to aid in designing and fabricating catalytic materials. Supported metal nanoparticle (SMN) catalysts are enormously crucial for many catalytic applications. However, catalyst deactivation, caused by sintering and coke formation, is a ubiquitous problem that significantly …


Electrochemical Gelation Of Metal Chalcogenide Quantum Dots, Chathuranga Chinthana Hewa Rahinduwage Jan 2022

Electrochemical Gelation Of Metal Chalcogenide Quantum Dots, Chathuranga Chinthana Hewa Rahinduwage

Wayne State University Dissertations

Quantum dots (QDs) are attractive because of their unique size-dependent optical and electronic properties and high surface area. They are tested in research for diverse applications, including energy conversion, catalysis, and sensing. Assembling QDs into functional solid-state devices while preserving their attractive properties is a challenge. Methods currently under the research are not effective in directly fabricating QDs onto devices, making large area assemblies, maintaining the high surface area by forming 3D porous structures, and conducting electricity for applications such as sensing. QD gels are an example of QD assemblies that consist of a 3D porous interconnected QD network. They …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …