Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Electrical and Computer Engineering

Solar cells

2013

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Synthesis And Characterization Of Iron Pyrite Nanocrystals For Photovoltaic Devices, Scott Curtis Mangham May 2013

Synthesis And Characterization Of Iron Pyrite Nanocrystals For Photovoltaic Devices, Scott Curtis Mangham

Graduate Theses and Dissertations

Iron pyrite nanocrystals have been synthesized using a hot-injection method with a variety of amines and characterized with properties necessary for photovoltaic devices. The iron pyrite nanocrystals were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption, micro-Raman, and micro-Photoluminescence. The optical absorbance spectra showed the large absorption in the visible and near infrared spectral range for the nanocrystals as well as to show the band gap. The face-centered cubic crystal structure of the iron pyrite nanocrystals was shown by matching the measured X-ray diffraction pattern to a face-centered cubic iron pyrite reference pattern. Using Bragg's law …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …