Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Nanoscience and Nanotechnology

Nanoparticles For Biomedical Applications, Joseph Kim May 2022

Nanoparticles For Biomedical Applications, Joseph Kim

Dissertations & Theses (Open Access)

This thesis presents development and evaluation of the potential of three new nanoparticles for biomedical applications. With the rapid growth of the field of nanoscience, researchers have explored developing nanoparticles for various biomedical applications, including imaging, therapy, and drug delivery. This thesis demonstrates the development of two C­60 fullerene based nanoparticles and one boron based nanoparticle to answer key questions related to their biological potential.

In the first part of the thesis, we describe synthesis and characterization of a pure boron nanoparticle containing asolectin phospholipid-based liposome construct prepared using a water-in-oil emulsion method, as a novel alternative agent for …


Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez Jan 2021

Zein And Lignin-Based Nanoparticles As Delivery Systems: Pesticide Release And Nanoparticle Health Impact On Soybean Plants, Fallon Polette Salinas Gonzalez

LSU Doctoral Dissertations

This research examined the effect of biodegradable, polymeric, lignin-based nanoparticles (LNPs, 113.8±3.4, negatively charged) and zein nanoparticles (ZNP, 141.6±3.9, positively charged) on soybean plant health. The LNPs were synthesized from lignin, covalently linked to poly(lactic-co-glycolic) acid by emulsion evaporation. ZNPs were synthesized by nanoprecipitation. Soybeans grown hydroponically were treated with three concentrations (0.02, 0.2, and 2 mg/ml) of NPs at 28 days after germination. The effect of ZNPs and LNPs on plant health was determined through analysis of root and stem length, chlorophyll concentration, dry biomass of roots and stem, as well as carbon, nitrogen, and micronutrient absorption after 1, …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Anti-Gd2 Etoposide-Loaded Immunoliposomes For The Treatment Of Gd2 Positive Tumors, Brandon S. Brown May 2014

Anti-Gd2 Etoposide-Loaded Immunoliposomes For The Treatment Of Gd2 Positive Tumors, Brandon S. Brown

Dissertations & Theses (Open Access)

Systemic chemotherapeutics remain the standard of care for most malignancies even though they frequently suffer from narrow therapeutic index, poor serum solubility, and off-target effects. Monoclonal antibodies that specifically bind antigens overexpressed on many tumors such as the ganglioside, GD2, can be conjugated to drug-loaded liposomes to create a targeted drug delivery system. In this study, we have encapsulated etoposide, a topoisomerase inhibitor effective against a wide range of cancers, in surface modified liposomes decorated with anti-GD2 antibodies. We characterized the properties of the liposomes using a variety of methods including dynamic light scattering, electron microscopy, and Fourier transformed infrared …


Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes Jun 2013

Fluorescence Characterization Of Quantum Dots For Use As Biomarkers, Logan M. Grimes

Materials Engineering

Fluorescence profiles of quantum dots (QDs) were characterized to select the ideal QDs for encapsulation in phospholipids for use as biomarkers to selectively adhere to cancer cells. QDs were synthesized and extracted 0, 30, 60, and 90 seconds after precursor compounds were mixed. These extractions were isolated by extraction time. Portions from each vial were coated in a zinc sulfide shelling procedure, leaving at least half of the QD solution unshelled. These samples were characterized over four days to monitor fluctuations in fluorescence. This was done utilizing an Ocean Optics spectrometer in conjunction with Spectra Suite software. The central wavelength, …


A Dna Computer For Glioblastoma Multiforme Diagnosis And Drug Delivery, Sumaiya F. Hashmi Jan 2013

A Dna Computer For Glioblastoma Multiforme Diagnosis And Drug Delivery, Sumaiya F. Hashmi

CMC Senior Theses

Glioblastoma multiforme (GBM) is a debilitating malignant brain tumor with expected patient survival of less than a year and limited responsiveness to most treatments, often requiring biopsy for diagnosis and invasive surgery for treatment. We propose a DNA computer system, consisting of input, computation, and output components, for diagnosis and treatment. The input component will detect the presence of three GBM biomarkers: vascular endothelial growth factor (VEGF), caveolin-1α (CAV), and B2 receptors. The computation component will include indicator segments for each of these genes, and ensure that output is only released if all the biomarkers are present. The output component …


Nanocrystals Of Chemotherapeutic Agents For Cancer Theranostics: Development And In Vitro And In Vivo Evaluation, Christin P. Hollis Jan 2012

Nanocrystals Of Chemotherapeutic Agents For Cancer Theranostics: Development And In Vitro And In Vivo Evaluation, Christin P. Hollis

Theses and Dissertations--Pharmacy

The majority of pharmacologically active chemotherapeutics are poorly water soluble. Solubilization enhancement by the utilization of organic solvents often leads to adverse side effects. Nanoparticle-based cancer therapy, which is passively targeted to the tumor tissue via the enhanced permeation and retention effect, has been vastly developed in recent years. Nanocrystals, which exist as crystalline and carry nearly 100% drug loading, has been explored for delivering antineoplastic agents. Additionally, the hybrid nanocrystal concept offers a novel and simple way to integrate imaging agents into the drug crystals, enabling the achievement of theranostics. The overall objective of this dissertation is to formulate …


Macrophages Loaded With Gold Nanoshells For Photothermal Ablation Of Glioma: An In Vitro Model, Amani Riad Makkouk Aug 2010

Macrophages Loaded With Gold Nanoshells For Photothermal Ablation Of Glioma: An In Vitro Model, Amani Riad Makkouk

UNLV Theses, Dissertations, Professional Papers, and Capstones

The current median survival of patients with glioblastoma multiforme (GBM), the most common type of glioma, remains at 14.6 months despite multimodal treatments (surgery, radiotherapy and chemotherapy). This research aims to study the feasibility of photothermal ablation of glioma using gold nanoshells that are heated upon laser irradiation at their resonance wavelength. The novelty of our approach lies in improving nanoshell tumor delivery by loading them in macrophages, which are known to be recruited to gliomas via tumor-released chemoattractive agents. Ferumoxides, superparamagnetic iron oxide (SPIO) nanoparticles, are needed as an additional macrophage load in order to visualize macrophage accumulation in …