Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Nanotechnology

Chemistry Faculty Publications and Presentations

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Imaging, Spectroscopic, Mechanical And Biocompatibility Studies Of Electrospun Tecoflex® Eg 80a Nanofibers And Composites Thereof Containing Multiwalled Carbon Nanotubes, Javier Macossay-Torres, Faheem A. Sheikh, Travis Cantu, Thomas Eubanks, M. Esther Salinas, Chakavak S. Farhangi, Hassan Ahmad, M. Shamshi Hassan, Myung-Seob Khil, Shivani K. Maffi, Hern Kim, Gary L. Bowlin Dec 2014

Imaging, Spectroscopic, Mechanical And Biocompatibility Studies Of Electrospun Tecoflex® Eg 80a Nanofibers And Composites Thereof Containing Multiwalled Carbon Nanotubes, Javier Macossay-Torres, Faheem A. Sheikh, Travis Cantu, Thomas Eubanks, M. Esther Salinas, Chakavak S. Farhangi, Hassan Ahmad, M. Shamshi Hassan, Myung-Seob Khil, Shivani K. Maffi, Hern Kim, Gary L. Bowlin

Chemistry Faculty Publications and Presentations

The present study discusses the design, development and characterization of electrospun Tecoflex® EG 80A class of polyurethane nanofibers and the incorporation of multiwalled carbon nanotubes (MWCNTs) to these materials. Scanning electron microscopy results confirmed the presence of polymer nanofibers, which showed a decrease in fiber diameter at 0.5% wt. and 1% wt. MWCNTs loadings, while transmission electron microscopy showed evidence of the MWCNTs embedded within the polymer matrix. The fourier transform infrared spectroscopy and Raman spectroscopy were used to elucidate the polymer-MWCNTs intermolecular interactions, indicating that the C-N and N-H bonds in polyurethanes are responsible for the interactions with MWCNTs. …


Microscopic And Spectroscopic Studies Of Thermally Enhanced Electrospun Pmma Micro- And Nanofibers, Sean Pelfrey, Travis Cantu, Michael R. Papantonakis, Duane L. Simonson, R. Andrew Mcgill, Javier Macossay-Torres Mar 2010

Microscopic And Spectroscopic Studies Of Thermally Enhanced Electrospun Pmma Micro- And Nanofibers, Sean Pelfrey, Travis Cantu, Michael R. Papantonakis, Duane L. Simonson, R. Andrew Mcgill, Javier Macossay-Torres

Chemistry Faculty Publications and Presentations

Carbon nanofibers (CNFs) have been incorporated into poly(methyl methacrylate) (PMMA) through electrospinning. The resulting micro- and nanofibers have been characterized by Scanning Electron Microscopy (SEM), which confirmed fiber formation and demonstrated a core-sheath structure of the PMMA fibers. Thermogravimetric Analysis (TGA) was used to obtain the thermal properties of the materials, indicating an enhancement in the thermal properties of the composite fibers. In addition, Fourier Transform Infrared Spectroscopy (FTIR) was utilized to investigate the interactions of PMMA micro- and nanofibers with CNFs, demonstrating the preferred sites of intermolecular interactions between the polymer matrix and the filler.