Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Nanoscience and Nanotechnology

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Ferromagnetic Resonance On Ni Nanowire Arrays, Mircea Chipara, Ralph Skomski, Roger D. Kirby, David J. Sellmyer Sep 2011

Ferromagnetic Resonance On Ni Nanowire Arrays, Mircea Chipara, Ralph Skomski, Roger D. Kirby, David J. Sellmyer

Physics and Astronomy Faculty Publications and Presentations

Ferromagnetic resonance investigations on Ni nanowires are reported. The angular dependence of the resonance line position is analyzed within a thermodynamic approach that includes shape anisotropy (ellipsoids of revolution), magnetocrystalline anisotropies (cubic and uniaxial), and dipole–dipole interactions. The results are supported by hysteresis loops, obtained on the same sample.


Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla Aug 2011

Domain Size And Structure In Exchange Coupled [Co/Pt]/Nio/[Co/Pt] Multilayers, Andrew G. Baruth, Shireen Adenwalla

Shireen Adenwalla Papers

We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and …


Using Nanotechnology To Detect Nerve Agents, Mark N. Goltz, Dong-Shik Kim, Leeann Racz Jul 2011

Using Nanotechnology To Detect Nerve Agents, Mark N. Goltz, Dong-Shik Kim, Leeann Racz

Faculty Publications

Nanotechnology has opened a wide range of opportunities having potential impacts in areas as diverse as medicine and consumer products. In collaboration with researchers at the University of Toledo UT, Air Force Institute of Technology AFIT scientists are exploring the possibility of using a nanoscale organic matrix to detect organophosphate OP nerve agents. Current techniques for detecting OP compounds are expensive and time consuming. Developing a nanoscale organic matrix sensor would allow for direct, real-time sensing under field conditions. This article describes the science behind such a sensor and its possible applications. High-performance sensors are needed to protect Soldiers and …


Fabrication Of Poly(Vinylidene Fluoride) (Pvdf) Nanofibers Containing Nickel Nanoparticles As Future Energy Server Materials, Faheem A. Sheikh, Travis Cantu, Javier Macossay-Torres, Hern Kim Apr 2011

Fabrication Of Poly(Vinylidene Fluoride) (Pvdf) Nanofibers Containing Nickel Nanoparticles As Future Energy Server Materials, Faheem A. Sheikh, Travis Cantu, Javier Macossay-Torres, Hern Kim

Chemistry Faculty Publications and Presentations

In the present study, we introduce Poly(vinylidene fluoride) (PVDF) nanofibers containing nickel (Ni) nanoparticles (NPs) as a result of an electrospinning. Typically, a colloidal solution consisting of PVDF/Ni NPs was prepared to produce nanofibers embedded with solid NPs by electrospinning process. The resultant nanostructures were studied by SEM analyses, which confirmed well oriented nanofibers and good dispersion of Ni NPs over them. The XRD results demonstrated well crystalline feature of PVDF and Ni in the obtained nanostructures. Physiochemical aspects of prepared nano-structures were characterized for TEM which confirmed nanofibers were welloriented and had good dispersion of Ni NPs. Furthermore, the …


Superlattice Ultrasonic Generation, Thomas E. Wilson, M. Oehme, E. Kasper, H-J. L. Gossmann Mar 2011

Superlattice Ultrasonic Generation, Thomas E. Wilson, M. Oehme, E. Kasper, H-J. L. Gossmann

Physics Faculty Research

We report the first experimental evidence for the resonant excitation of coherent high-frequency acoustic phonons in semiconducting doping superstructures by far-infrared laser radiation. After a grating-coupled delta-doped silicon doping superlattice is illuminated with ~1 kW/mm2 nanosecond-pulsed 246 GHz laser radiation, a delayed nanosecond pulse is detected by a superconducting bolometer at a time corresponding to the appropriate time-of-flight for ballistic longitudinal acoustic phonons across the (100) silicon substrate. The absorbed phonon power density in the microbolometer is observed to be ~10 μW/mm2, in agreement with theory. The phonon pulse duration also matches the laser pulse duration. The …


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu Tekalign, Margo Levine

Mathematics Faculty Publications

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mathematics Faculty Publications

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


A Cell Electrofusion Microfluidic Device Integrated With 3d Thin-Film Microelectrode Arrays, Ning Hu, Jun Yang, Shizhi Qian, Sang W. Joo, Xiaolin Zheng Jan 2011

A Cell Electrofusion Microfluidic Device Integrated With 3d Thin-Film Microelectrode Arrays, Ning Hu, Jun Yang, Shizhi Qian, Sang W. Joo, Xiaolin Zheng

Mechanical & Aerospace Engineering Faculty Publications

A microfluidic device integrated with 3D thin film microelectrode arrays wrapped around serpentine-shaped microchannel walls has been designed, fabricated and tested for cell electrofusion. Each microelectrode array has 1015 discrete microelectrodes patterned on each side wall, and the adjacent microelectrodes are separated by coplanar dielectric channel wall. The device was tested to electrofuse K562 cells under a relatively low voltage. Under an AC electric field applied between the pair of the microelectrode arrays, cells are paired at the edge of each discrete microelectrode due to the induced positive dielectrophoresis. Subsequently, electric pulse signals are sequentially applied between the microelectrode arrays …


Localized Surface Plasmon Resonance Of Single Silver Nanoparticles Studied By Dark-Field Optical Microscopy And Spectroscopy, Wei Cao, Tao Huang, Xiao-Hong Nancy Xu, Hani E. Elsayed-Ali Jan 2011

Localized Surface Plasmon Resonance Of Single Silver Nanoparticles Studied By Dark-Field Optical Microscopy And Spectroscopy, Wei Cao, Tao Huang, Xiao-Hong Nancy Xu, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Localized surface plasmon resonance (LSPR) of Ag nanoparticles (NPs) with different shapes and disk-shaped Ag NP pairs with varying interparticle distance is studied using dark-field optical microscopy and spectroscopy (DFOMS). Disk-, square-, and triangular-shaped Ag NPs were fabricated on indium tin oxide-coated glass substrates by electron beam lithography. The LSPR spectra collected from single Ag NPs within 5×5 arrays using DFOMS exhibited pronounced redshifts as the NP shape changed from disk to square and to triangular. The shape-dependent experimental LSPR spectra are in good agreement with simulations using the discrete dipole approximation model, although there are small deviations in the …


Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali Jan 2011

Nonuniformity In Lattice Contraction Of Bismuth Nanoclusters Heated Near Its Melting Point, A. Esmail, M. Abdel-Fattah, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

The structural properties of bismuth nanoclusters were investigated with transmission high-energy electron diffraction from room temperature up to 525 ± 6 K. The Bi nanoclusters were fabricated by thermal evaporation at room temperature on transmission electron microscope grids coated with an ultrathin carbon film, followed by thermal and femtosecond laser annealing. The annealed sample had an average cluster size of ∼14 nm along the minor axis and ∼16 nm along the major axis. The Debye temperature of the annealed nanoclusters was found to be 53 ± 6 K along the [012] direction and 86 ± 9 K along the [110] …


Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller Jan 2011

Precise Control Of Highly Ordered Arrays Of Nested Semiconductor/Metal Nanotubes, Diefeng Gu, Helmut Baumgart, Kandabara Tapily, Pragya Shrestha, Gon Namkoong, Xianyu Ao, Frank Müller

Electrical & Computer Engineering Faculty Publications

Lithographically defined microporous templates in conjunction with the atomic layer deposition (ALD) technique enable remarkable control of complex novel nested nanotube structures. So far three-dimensional control of physical process parameters has not been fully realized with high precision resolution, and requires optimization in order to achieve a wider range of potential applications. Furthermore, the combination of composite insulating oxide layers alternating with semiconducting layers and metals can provide various types of novel applications and eventually provide unique and advanced levels of multifunctional nanoscale devices. Semiconducting TiO2 nanotubes have potential applications in photovoltaic devices. The combination of nanostructured semiconducting materials …


Crystallite Phase And Orientation Determinations Of (Mn, Ga) As/Gaas-Crystallites Using Analyzed (Precession) Electron Diffraction Patterns, Ines Häusler, Stavros Nicolopoulos, Edgar F. Rauch, K. Volz, Peter Moeck Jan 2011

Crystallite Phase And Orientation Determinations Of (Mn, Ga) As/Gaas-Crystallites Using Analyzed (Precession) Electron Diffraction Patterns, Ines Häusler, Stavros Nicolopoulos, Edgar F. Rauch, K. Volz, Peter Moeck

Physics Faculty Publications and Presentations

Outline of the presentation:

1. Material system: (Mn,Ga)As/GaAs-crystallites

2. Structure analysis using Nano-beam Diffraction (NBD) Precession Electron Diffraction Technique (PED) --> Structure type I + II

3. Phase and orientation mapping using ASTAR

4. Conclusion