Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov May 2020

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca2+, Cd2+, Zn2+, and Ba2+ ions can be used as nanoporation markers. Time-lapse imaging was performed in CHO, BPAE, and HEK cells loaded with Fluo-4, Calbryte, or Fluo-8 dyes. Ca2+ and Ba2+ did not change fluorescence in intact cells, whereas their entry after nsPEF increased fluorescence within <1 ms. The threshold for one 300-ns pulse was at 1.5–2 kV/cm, much lower than >7 …


Cell Permeabilization And Inhibition Of Voltage-Gated Ca²+ And Na+ Channel Currents By Nanosecond Pulsed Electric Fields, Vasyl Nesin, Angela M. Bowman, Shu Xiao, Andrei G. Pakhomov Jan 2012

Cell Permeabilization And Inhibition Of Voltage-Gated Ca²+ And Na+ Channel Currents By Nanosecond Pulsed Electric Fields, Vasyl Nesin, Angela M. Bowman, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Previous studies have found that nanosecond pulsed electric field (nsPEF) exposure causes long-term permeabilization of the cell plasma membrane. In this study, we utilized the whole-cell patch-clamp method to study the nsPEF effect on currents of voltage-gated (VG) Ca2+ and Na+ channels (ICa and INa) in cultured GH3 and NG108 cells. We found that a single 300 or 600 ns pulse at or above 1.5-2 kV/cm caused prolonged inhibition of ICa and INa. Concurrently, nsPEF increased a non-inactivating leak current (Ileak), presumably due to the formation of nanoelectropores or larger …