Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Interfacial Current Distribution Between Helium Plasma Jet And Water Solution, Sui Wang, Dingxin Liu, Zifeng Wang, Yifan Liu, Qiaosong Li, Xiaohua Wang, Michael G. Kong, Mingzhe Rong Jan 2020

Interfacial Current Distribution Between Helium Plasma Jet And Water Solution, Sui Wang, Dingxin Liu, Zifeng Wang, Yifan Liu, Qiaosong Li, Xiaohua Wang, Michael G. Kong, Mingzhe Rong

Bioelectrics Publications

The plasma-liquid interaction holds great importance for a number of emerging applications such as plasma biomedicine, yet a main fundamental question remains about the nature of the physiochemical processes occurring at the plasma-liquid interface. In this paper, the interfacial current distribution between helium plasma jet and water solution was measured for the first time by means of the splitting electrode method, which was borrowed from the field of arc plasma. For a plasma plume in continuous mode, it was found that the mean absolute current distribution at the plasma-liquid interface typically had an annular shape. This shape could be affected …


Ablation Of Myocardial Tissue With Nanosecond Pulsed Electric Fields, Fei Xie, Frency Varghese, Andrei G. Pakhomov, Iurii Semenov, Shu Xiao, Jonathan Philpott, Christian Zemlin Jan 2015

Ablation Of Myocardial Tissue With Nanosecond Pulsed Electric Fields, Fei Xie, Frency Varghese, Andrei G. Pakhomov, Iurii Semenov, Shu Xiao, Jonathan Philpott, Christian Zemlin

Bioelectrics Publications

Background

Ablation of cardiac tissue is an essential tool for the treatment of arrhythmias, particularly of atrial fibrillation, atrial flutter, and ventricular tachycardia. Current ablation technologies suffer from substantial recurrence rates, thermal side effects, and long procedure times. We demonstrate that ablation with nanosecond pulsed electric fields (nsPEFs) can potentially overcome these limitations.

Methods

We used optical mapping to monitor electrical activity in Langendorff-perfused New Zealand rabbit hearts (n = 12). We repeatedly inserted two shock electrodes, spaced 2–4 mm apart, into the ventricles (through the entire wall) and applied nanosecond pulsed electric fields (nsPEF) (5–20 kV/cm, 350 ns duration, …