Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Slip-Jump Model For Carbon Combustion Synthesis Of Complex Oxide Nanoparticles, A. A. Markov, Mkhitar A. Hobosyan, Karen S. Martirosyan Jan 2016

Slip-Jump Model For Carbon Combustion Synthesis Of Complex Oxide Nanoparticles, A. A. Markov, Mkhitar A. Hobosyan, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

Carbon Combustion Synthesis of Oxides (CCSO) is a promising method to produce submicron- and nano- sized complex oxides. The CCSO was successfully utilized for producing several complex oxides, a complete theoretical model including the sample porosity, fl ow parameters and reaction energetics is needed to predict the combustion parameters for CCSO. In this work, we studied the ignition temperature and combustion wave axial temperature distribution, activation energy, combustion heat and thermal losses for a typical CCSO synthesis for cylindrical samples of Ni-Zn ferrites with high (>85%) porosity. We developed a two level combustion model of chemically active nano-dispersed mixture, …


Fabrication Of Yttrium Ferrite Nanoparticles By Solution Combustion Synthesis, A. A. Saukhimov, Mkhitar A. Hobosyan, Gamage C. Dannangoda, N. N. Zhumabekova, S. E. Kumekov Jan 2014

Fabrication Of Yttrium Ferrite Nanoparticles By Solution Combustion Synthesis, A. A. Saukhimov, Mkhitar A. Hobosyan, Gamage C. Dannangoda, N. N. Zhumabekova, S. E. Kumekov

Physics and Astronomy Faculty Publications and Presentations

The ternary oxide system Y-Fe-O presents fascinating magnetic properties that are sensitive to the crystalline size of particles. There is a major challenge to fabricate these materials in nano-crystalline forms due to particle conglomeration during nucleation and synthesis. In this paper we report the fabrication of nano sized crystalline yttrium ferrite by solution combustion synthesis (SCS) where yttrium and iron nitrates were used as metal precursors with glycine as a fuel. The magnetic properties of the product can be selectively controlled by adjusting the ratio of glycine to metal nitrates. Yttrium ferrite nano-powder was obtained by using three concentration of …


Reactive Self-Heating Model Of Aluminum Spherical Nanoparticles, Karen S. Martirosyan, Maxim Zyskin Jan 2013

Reactive Self-Heating Model Of Aluminum Spherical Nanoparticles, Karen S. Martirosyan, Maxim Zyskin

Physics and Astronomy Faculty Publications and Presentations

Aluminum-oxygen reaction is important in highly energetic and high pressure generating systems. Recent experiments with nanostructured thermites suggest that oxidation of aluminum nanoparticles occurs in a few microseconds. Such rapid reaction cannot be explained by a conventional diffusion-based mechanism. We present a rapid oxidation model of a spherical aluminum nanoparticle, using Cabrera-Mott moving boundary mechanism, and taking self-heating into account. In our model, electric potential solves the nonlinear Poisson equation. In contrast with the Coulomb potential, a “double-layer” type solution for the potential and self-heating leads to enhanced oxidation rates. At maximal reaction temperature of 2000 C, our model predicts …


Fabrication Of Poly(Vinylidene Fluoride) (Pvdf) Nanofibers Containing Nickel Nanoparticles As Future Energy Server Materials, Faheem A. Sheikh, Travis Cantu, Javier Macossay-Torres, Hern Kim Apr 2011

Fabrication Of Poly(Vinylidene Fluoride) (Pvdf) Nanofibers Containing Nickel Nanoparticles As Future Energy Server Materials, Faheem A. Sheikh, Travis Cantu, Javier Macossay-Torres, Hern Kim

Chemistry Faculty Publications and Presentations

In the present study, we introduce Poly(vinylidene fluoride) (PVDF) nanofibers containing nickel (Ni) nanoparticles (NPs) as a result of an electrospinning. Typically, a colloidal solution consisting of PVDF/Ni NPs was prepared to produce nanofibers embedded with solid NPs by electrospinning process. The resultant nanostructures were studied by SEM analyses, which confirmed well oriented nanofibers and good dispersion of Ni NPs over them. The XRD results demonstrated well crystalline feature of PVDF and Ni in the obtained nanostructures. Physiochemical aspects of prepared nano-structures were characterized for TEM which confirmed nanofibers were welloriented and had good dispersion of Ni NPs. Furthermore, the …