Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

University of Nebraska - Lincoln

Texture

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Synthesis And Characterization Of Highly Textured Pt–Bi Thin Films, Xingzhong Li, Parashu Kharel, Shah R. Valloppilly, David J. Sellmyer Sep 2011

Synthesis And Characterization Of Highly Textured Pt–Bi Thin Films, Xingzhong Li, Parashu Kharel, Shah R. Valloppilly, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Pt–Bi films were synthesized on glass and thermally oxidized silicon substrates by e-beam evaporation and annealing. The structures were characterized using X-ray diffraction (XRD) and transmission electron microscopy/selected area electron diffraction (TEM/SAED) techniques. Single-phase PtBi was obtained at an annealing temperature of 300°C, whereas a higher annealing temperature of 400°C was required to obtain the highly textured γ-PtBi2 phase. TEM/SAED analysis showed that the films annealed at 400°C contain a dominant γ-PtBi2 phase with a small amount of β-PtBi2 and α-PtBi2 phases. Both the PtBi and γ-PtBi2 phases are highly textured in these two kinds of film: the c-axis of …


High-Resolution Thin-Film Device To Sense Texture By Touch, Ravi F. Saraf, Vivek Maheshwari Jun 2006

High-Resolution Thin-Film Device To Sense Texture By Touch, Ravi F. Saraf, Vivek Maheshwari

Papers in Nanotechnology

Touch (or tactile) sensors are gaining renewed interest as the level of sophistication in the application of minimum invasive surgery and humanoid robots increases. The spatial resolution of current large-area (greater than 1 cm2) tactile sensor lags by more than an order of magnitude compared with the human finger. By using metal and semi conducting nanoparticles, a 100-nm-thick, large-area thin-film device is self-assembled such that the change in current density through the film and the electroluminescent light intensity are linearly proportional to the local stress. A stress image is obtained by pressing a copper grid and a United …


High-Resolution Thin-Film Device To Sense Texture By Touch, Ravi F. Saraf, Vivek Maheshwari Jun 2006

High-Resolution Thin-Film Device To Sense Texture By Touch, Ravi F. Saraf, Vivek Maheshwari

Papers in Nanotechnology

Touch (or tactile) sensors are gaining renewed interest as the level of sophistication in the application of minimum invasive surgery and humanoid robots increases. The spatial resolution of current large-area (greater than 1 cm2) tactile sensor lags by more than an order of magnitude compared with the human finger. By using metal and semi conducting nanoparticles, a 100-nm-thick, large-area thin-film device is self-assembled such that the change in current density through the film and the electroluminescent light intensity are linearly proportional to the local stress. A stress image is obtained by pressing a copper grid and a United States 1-cent …