Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

University of Nebraska - Lincoln

Mechanical Engineering

2021

Wound healing

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

In Vivo Printing Of Growth Factor-Eluting Adhesive Scaffolds Improves Wound Healing, Kristo Nuutila, Mohamadmahdi Samandari, Yori Endo, Yuteng Zhang, Jacob Quint, Tannin A. Schmidt, Ali Tamayol, Indranil Sinha Jul 2021

In Vivo Printing Of Growth Factor-Eluting Adhesive Scaffolds Improves Wound Healing, Kristo Nuutila, Mohamadmahdi Samandari, Yori Endo, Yuteng Zhang, Jacob Quint, Tannin A. Schmidt, Ali Tamayol, Indranil Sinha

Department of Mechanical and Materials Engineering: Faculty Publications

Acute and chronic wounds affect millions of people around the world, imposing a growing financial burden on patients and hospitals. Despite the application of current wound management strategies, the physiological healing process is disrupted in many cases, resulting in impaired wound healing. Therefore, more efficient and easy-to-use treatment modalities are needed. In this study, we demonstrate the benefit of in vivo printed, growth factor-eluting adhesive scaffolds for the treatment of full-thickness wounds in a porcine model. A custom-made handheld printer is implemented to finely print gelatin-methacryloyl (GelMA) hydrogel containing vascular endothelial growth factor (VEGF) into the wounds. In vitro and …


Electrostatic Flocking Of Salt-Treated Microfibers And Nanofiber Yarns For Regenerative Engineering, Alec Mccarthy, Kossi Loic M. Avegnon, Phil A. Holubeck, Demi Brown, Anik Karan, Navatha Shree Sharma, Johnson V. John, Shelbie Weihs, Jazmin Ley, Jingwei Xie Jan 2021

Electrostatic Flocking Of Salt-Treated Microfibers And Nanofiber Yarns For Regenerative Engineering, Alec Mccarthy, Kossi Loic M. Avegnon, Phil A. Holubeck, Demi Brown, Anik Karan, Navatha Shree Sharma, Johnson V. John, Shelbie Weihs, Jazmin Ley, Jingwei Xie

Department of Mechanical and Materials Engineering: Faculty Publications

Electrostatic flocking is a textile technology that employs a Coulombic driving force to launch short fibers from a charging source towards an adhesive-covered substrate, resulting in a dense array of aligned fibers perpendicular to the substrate. However, electrostatic flocking of insulative polymeric fibers remains a challenge due to their insufficient charge accumulation. We report a facile method to flock electrostatically insulative poly(ε-caprolactone) (PCL) microfibers (MFs) and electrospun PCL nanofiber yarns (NFYs) by incorporating NaCl during preflock processing. Both MF and NFY were evaluated for flock functionality, mechanical properties, and biological responses. To demonstrate this platform's diverse applications, standalone flocked NFY …