Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

University of Nebraska - Lincoln

Mechanical Engineering

2009

C. Cohesive zone model

Articles 1 - 1 of 1

Full-Text Articles in Nanoscience and Nanotechnology

Computational Model For Predicting Nonlinear Viscoelastic Damage Evolution In Materials Subjected To Dynamic Loading, Flavio V. Souza, Yong-Rak Kim, George A. Gazonas, David H. Allen Jan 2009

Computational Model For Predicting Nonlinear Viscoelastic Damage Evolution In Materials Subjected To Dynamic Loading, Flavio V. Souza, Yong-Rak Kim, George A. Gazonas, David H. Allen

Department of Mechanical and Materials Engineering: Faculty Publications

Many inelastic solids accumulate numerous cracks before failure due to impact loading, thus rendering any exact solution of the IBVP untenable. It is therefore useful to construct computational models that can accurately predict the evolution of damage during actual impact/dynamic events in order to develop design tools for assessing performance characteristics. This paper presents a computational model for predicting the evolution of cracking in structures subjected to dynamic loading. Fracture is modeled via a nonlinear viscoelastic cohesive zone model. Two example problems are shown: one for model validation through comparison with a one-dimensional analytical solution for dynamic viscoelastic debonding, and …