Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Predictive Coupled-Cluster Isomer Orderings For Some SiNCM (M, N ≤ 12) Clusters: A Pragmatic Comparison Between Dft And Complete Basis Limit Coupled-Cluster Benchmarks, Jason N. Byrd, Jesse J. Lutz, Duminda S. Ranasinghe, Yifan Jin, Ajith Perera, Xiaofeng F. Duan, Larry W. Burggraf, John A. Montgomery Jr. Jul 2016

Predictive Coupled-Cluster Isomer Orderings For Some SiNCM (M, N ≤ 12) Clusters: A Pragmatic Comparison Between Dft And Complete Basis Limit Coupled-Cluster Benchmarks, Jason N. Byrd, Jesse J. Lutz, Duminda S. Ranasinghe, Yifan Jin, Ajith Perera, Xiaofeng F. Duan, Larry W. Burggraf, John A. Montgomery Jr.

Faculty Publications

The accurate determination of the preferred Si12C12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3 to Si12C12. It is found that post-MBPT(2) correlation energy plays a …


Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan Jan 2015

Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan

Faculty Publications

This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G) and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse …


Using Nanotechnology To Detect Nerve Agents, Mark N. Goltz, Dong-Shik Kim, Leeann Racz Jul 2011

Using Nanotechnology To Detect Nerve Agents, Mark N. Goltz, Dong-Shik Kim, Leeann Racz

Faculty Publications

Nanotechnology has opened a wide range of opportunities having potential impacts in areas as diverse as medicine and consumer products. In collaboration with researchers at the University of Toledo UT, Air Force Institute of Technology AFIT scientists are exploring the possibility of using a nanoscale organic matrix to detect organophosphate OP nerve agents. Current techniques for detecting OP compounds are expensive and time consuming. Developing a nanoscale organic matrix sensor would allow for direct, real-time sensing under field conditions. This article describes the science behind such a sensor and its possible applications. High-performance sensors are needed to protect Soldiers and …