Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nanoscience and Nanotechnology

Anomalous Stranski-Krastanov Growth Of (111)-Oriented Quantum Dots With Tunable Wetting Layer Thickness, Christopher F. Schuck, Simon K. Roy, Trent Garrett, Paul J. Simmonds Dec 2019

Anomalous Stranski-Krastanov Growth Of (111)-Oriented Quantum Dots With Tunable Wetting Layer Thickness, Christopher F. Schuck, Simon K. Roy, Trent Garrett, Paul J. Simmonds

Materials Science and Engineering Faculty Publications and Presentations

Driven by tensile strain, GaAs quantum dots (QDs) self-assemble on In0.52Al0.48As(111)A surfaces lattice-matched to InP substrates. In this study, we show that the tensile-strained self-assembly process for these GaAs(111)A QDs unexpectedly deviates from the well-known Stranski-Krastanov (SK) growth mode. Traditionally, QDs formed via the SK growth mode form on top of a flat wetting layer (WL) whose thickness is fixed. The inability to tune WL thickness has inhibited researchers’ attempts to fully control QD-WL interactions in these hybrid 0D-2D quantum systems. In contrast, using microscopy, spectroscopy, and computational modeling, we demonstrate that for GaAs(111)A QDs, we …


Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory Nov 2019

Gamma-Ray Radiation Effects In Graphene-Based Transistors With H-Bn Nanometer Film Substrates, E. J. Cazalas, Michael R. Hogsed, S. R. Vangala, Michael R. Snure, John W. Mcclory

Faculty Publications

Radiation effects on graphene field effect transistors (GFETs) with hexagonal boron nitride (h-BN) thin film substrates are investigated using 60Co gamma-ray radiation. This study examines the radiation response using many samples with varying h-BN film thicknesses (1.6 and 20 nm thickness) and graphene channel lengths (5 and 10 μm). These samples were exposed to a total ionizing dose of approximately 1 Mrad(Si). I-V measurements were taken at fixed time intervals between irradiations and postirradiation. Dirac point voltage and current are extracted from the I-V measurements, as well as mobility, Dirac voltage hysteresis, and the total number of GFETs that remain …


Novel Silica Filled Deep Eutectic Solvent Based Nanofluids For Energy Transportation, Changhui Liu, Hui Fang, Xinjian Liu, Ben Xu, Zhonghao Rao Nov 2019

Novel Silica Filled Deep Eutectic Solvent Based Nanofluids For Energy Transportation, Changhui Liu, Hui Fang, Xinjian Liu, Ben Xu, Zhonghao Rao

Chemistry Faculty Publications and Presentations

Liquid range of nanofluids is a crucial parameter as it intensively determines their application temperature scope. Meanwhile, improved thermal conductivity and stability are of great significances and comprise the main fundamental research topics of nanofluids. In this work, 2- butoxy-3,4-dihydropyran (DP), produced from a convenient one-pot three-component reaction in water, was employed as dual lipophilic brusher and metal nanoparticle anchor. It was found that DP was able to enhance the dispersing ability and thermal conductivity of SiO2 nanoparticle filled deep eutectic solvent (DES) based nanofluids simultaneously. The key to the success of this protocol mainly relies on the electrophilic property …


Electroosmotic Flow Of Viscoelastic Fluid In A Nanochannel Connecting Two Reservoirs, Lanju Mei, Shizhi Qian Nov 2019

Electroosmotic Flow Of Viscoelastic Fluid In A Nanochannel Connecting Two Reservoirs, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) of viscoelastic fluid with Linear Phan-Thien–Tanner (LPTT) constitutive model in a nanochannel connecting two reservoirs is numerically studied. For the first time, the influence of viscoelasticity on the EOF and the ionic conductance in the micro-nanofluidic interconnect system, with consideration of the electrical double layers (EDLs), is investigated. Regardless of the bulk salt concentration, significant enhancement of the flow rate is observed for viscoelastic fluid compared to the Newtonian fluid, due to the shear thinning effect. An increase in the ionic conductance of the nanochannel occurs for the viscoelastic fluid. The enhancement of the ionic conductance is …


Synthesis Of Metal Oxide Surfaces And Interfaces With Crystallographic Control Using Solid-Liquid-Vapor Etching And Vapor-Liquid-Solid Growth, Beth S. Guiton, Lei Yu Jun 2019

Synthesis Of Metal Oxide Surfaces And Interfaces With Crystallographic Control Using Solid-Liquid-Vapor Etching And Vapor-Liquid-Solid Growth, Beth S. Guiton, Lei Yu

Chemistry Faculty Patents

The present invention provides integrated nanostructures comprising a single-crystalline matrix of a material A containing aligned, single-crystalline nanowires of a material B, with well-defined crystallographic interfaces are disclosed. The nanocomposite is fabricated by utilizing metal nanodroplets in two subsequent catalytic steps: solid-liquid-vapor etching, followed by vapor-liquid-solid growth. The first etching step produces pores, or “negative nanowires” within a single-crystalline matrix, which share a unique crystallographic direction, and are therefore aligned with respect to one another. Further, since they are contained within a single, crystalline, matrix, their size and spacing can be controlled by their interacting strain fields, and the array …


Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang May 2019

Triperyleno[3,3,3]Propellane Triimides: Achieving A New Generation Of Quasi-D3h Symmetric Nanostructures In Organic Electronics, Lingling Lv, Josiah Roberts, Chengyi Xiao, Zhenmei Jia, Wei Jiang, Chad Risko, Lei Zhang

Chemistry Faculty Publications

Rigid three-dimensional (3D) polycyclic aromatic hydrocarbons (PAHs), in particular 3D nanographenes, have garnered interest due to their potential use in semiconductor applications and as models to study through-bond and through-space electronic interactions. Herein we report the development of a novel 3D-symmetric rylene imide building block, triperyleno[3,3,3]propellane triimides (6), that possesses three perylene monoimide subunits fused on a propellane. This building block shows several promising characteristics, including high solubility, large π-surfaces, electron-accepting capabilities, and a variety of reactive sites. Further, the building block is compatible with different reactions to readily yield quasi-D3h symmetric nanostructures (9, …