Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Structures And Energetics Of Si Nanotubes From Molecular Dynamics And Density Functional Theory, Amritanshu Palaria, Gerhard Klimeck, Alejandro Strachan Nov 2013

Structures And Energetics Of Si Nanotubes From Molecular Dynamics And Density Functional Theory, Amritanshu Palaria, Gerhard Klimeck, Alejandro Strachan

Gerhard Klimeck

We use molecular dynamics (MD) with a first principles-based force field (ReaxFF) and density functional theory (DFT) to predict the atomic structure, energetics and elastic propoerties of Si nanotubes. We find various low-energy and low-symmetry hollow structures with external diameters of about 1 nm. These are the most stable structures in this small-diameter regime reported so far and exhibit properties very different from the bulk. While the cohesive energies of the four most stable nanotubes reported here are similar (from 0.638 to 0.697 eV above bulk Si), they have disparate Young's moduli (from 72 to 123 GPa).


Self-Consistent Multiscale Modeling In The Presence Of Inhomogeneous Fields, David Keffer Jan 2009

Self-Consistent Multiscale Modeling In The Presence Of Inhomogeneous Fields, David Keffer

David Keffer

Molecular dynamics (MD) simulations of a Lennard–Jones fluid in an inhomogeneous external field generate steady-state profiles of density and pressure with nanoscopic heterogeneities. The continuum level of mass, momentum, and energy transport balances is capable of reproducing the MD profiles only when the equation of state for pressure as a function of density is extracted directly from the molecular level of description. We show that the density profile resulting from simulation is consistent with both a molecular-level theoretical prediction from statistical mechanics as well as the solution of the continuum-level set of differential equations describing the conservation of mass and …


Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri Sep 2008

Unsteady Nanoscale Thermal Transport Across A Solid-Fluid Interface, Ganesh Balasubramanian, Soumik Banerjee, Ishwar K. Puri

Ganesh Balasubramanian

We simulate unsteady nanoscale thermal transport at a solid-fluidinterface by placing cooler liquid-vapor Ar mixtures adjacent to warmer Fe walls. The equilibration of the system towards a uniform overall temperature is investigated using nonequilibrium molecular dynamics simulations from which the heat flux is also determined explicitly. The Ar–Fe intermolecular interactions induce the migration of fluid atoms into quasicrystallineinterfacial layers adjacent to the walls, creating vacancies at the migration sites. This induces temperature discontinuities between the solidlikeinterfaces and their neighboring fluid molecules. The interfacial temperature difference and thus the heat flux decrease as the system equilibrates over time. The averaged interfacial …