Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Nanoscience and Nanotechnology

Analysis Of Scratches Formed On Oxide Surface During Chemical Mechanical Planarization, Jae-Gon Choi, Y. Nagendra Prasad, In-Kwon Kim, In-Gon Kim, Woo-Jin Kim, Ahmed A. Busnaina, Jin-Goo Park Jun 2011

Analysis Of Scratches Formed On Oxide Surface During Chemical Mechanical Planarization, Jae-Gon Choi, Y. Nagendra Prasad, In-Kwon Kim, In-Gon Kim, Woo-Jin Kim, Ahmed A. Busnaina, Jin-Goo Park

Ahmed A. Busnaina

Scratch formation on patterned oxide wafers during the chemical mechanical planarization process was investigated. Silica and ceria slurries were used for polishing the experiments to observe the effect of abrasives on the scratch formation. Interlevel dielectric patterned wafers were used to study the scratch dimensions, and shallow trench isolation patterned wafers were used to study the effect of polishing parameters, such as pressure and rotational speed (head/platen). Similar shapes of scratches (chatter type) were observed with both types of slurries. The length of the scratch formed might be related to the period of contact between the wafer and the pad. …


Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci Jun 2011

Parylene-C Passivated Carbon Nanotube Flexible Transistors, Selvapraba Selvarasah, Xinghui Li, Ahmed A. Busnaina, Mehmet R. Dokmeci

Ahmed A. Busnaina

Carbon nanotubes are extremely sensitive to the molecular species in the environment and hence require a proper passivation technique to isolate them against environmental variations for the realization of reliable nanoelectronic devices. In this paper, we demonstrate a parylene-C passivation approach for CNT thin film transistors fabricated on a flexible substrate. The CNT transistors are encapsulated with 1 and 3 μm thick parylene-C coatings, and the transistor characteristics are investigated before and after passivation. Our findings indicate that thin parylene-C films can be utilized as passivation layers for CNT transistors and this versatile technique can be readily applied for the …


Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina Jun 2011

Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina

Ahmed A. Busnaina

In this study, the interfacial and electrokinetic phenomena of mixtures of isopropyl alcohol (IPA) and deionized (DI) water in relation to semiconductor wafer drying is investigated. The dielectric constant of an IPA solution linearly decreased from 78 to 18 with the addition of IPA to DI water. The viscosity of IPA solutions increased as the volume percentage of IPA in DI water increased. The zeta potentials of silica particles and silicon wafers were also measured in IPA solutions. The zeta potential approached neutral values as the volume ratio of IPA in DI water increased. A surface tension decrease from 72 …


Three Dimensional Controlled Assembly Of Gold Nanoparticles Using A Micromachined Platform, Nishant Khanduja, Selvapraba Selvarasah, Chia-Ling Chen, Mehmet R. Dokmeci, Xugang Xiong, Prashanth Makaram, Ahmed A. Busnaina Jun 2011

Three Dimensional Controlled Assembly Of Gold Nanoparticles Using A Micromachined Platform, Nishant Khanduja, Selvapraba Selvarasah, Chia-Ling Chen, Mehmet R. Dokmeci, Xugang Xiong, Prashanth Makaram, Ahmed A. Busnaina

Ahmed A. Busnaina

By using optical lithographic procedures, the authors present a micromachined platform for large scale three dimensional (3D) assembly of gold nanoparticles with diameters of ∼ 50 nm. The gold nanoparticles are formed into 3D low resistance bridges (two terminal resistance of ∼ 40 Ω) interconnecting the two microelectrodes using ac dielectrophoresis. The thickness of the parylene interlevel dielectric can be adjusted to vary the height of the 3D platform for meeting different application requirements. This research represents a step towards realizing high density, three dimensional structures and devices for applications such as nanosensors, vertical integration of nanosystems, and characterization of …


Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer Jun 2011

Scalable Nanotemplate Assisted Directed Assembly Of Single Walled Carbon Nanotubes For Nanoscale Devices, Prashanth Makaram, Sivasubramanian Somu, Xugang Xiong, Ahmed A. Busnaina, Yung-Joon Jung, Nicol E. Mcgruer

Ahmed A. Busnaina

The authors demonstrate precise alignment and controlled assembly of single wall nanotube (SWNT) bundles at a fast rate over large areas by combining electrophoresis and dip coating processes. SWNTs in solution are assembled on prepatterned features that are 80 nm wide and separated by 200 nm. The results show that the direction of substrate withdrawal significantly affects the orientation and alignment of the assembled SWNT bundles. I-V characterization is carried out to demonstrate electrical continuity of these assembled SWNT bundles.


Experimental And Analytical Study Of Submicrometer Particle Removal From Deep Trenches, Kaveh Bakhtari, Rasim O. Guldiken, Ahmed A. Busnaina, Jin-Goo Park Jun 2011

Experimental And Analytical Study Of Submicrometer Particle Removal From Deep Trenches, Kaveh Bakhtari, Rasim O. Guldiken, Ahmed A. Busnaina, Jin-Goo Park

Ahmed A. Busnaina

Particle removal from patterned wafers and trenches presents a tremendous challenge in semiconductor manufacturing. In this paper, the removal of 0.3 and 0.8 µm polystyrene latex (PSL) particles from high-aspect-ratio 500 µm deep trenches is investigated. An experimental, analytical, and computational study of the removal of submicrometer particles at different depths inside the trench is presented. Red fluorescent polystyrene latex (PSL) particles were used to verify particle removal. The particles are counted using scanning fluorescent microscopy. A single-wafer megasonic tank is used for the particle removal. The results show that once a particle is removed from the walls or the …


Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park Jun 2011

Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park

Ahmed A. Busnaina

Theremoval of nanoparticles is becoming increasingly challenging as the minimumlinewidth continues to decrease in semiconductor manufacturing. In this paper,the removal of nanoparticles from flat substrates using acoustic streamingis investigated. Bare silicon wafers and masks with a 4 nmsilicon cap layer are cleaned. The silicon-cap films are usedin extreme ultraviolet masks to protect Mo–Si reflective multilayers. Theremoval of 63 nm polystyrene latex (PSL) particles from these substratesis conducted using single-wafer megasonic cleaning. The results show higherthan 99% removal of PSL nanoparticles. The results also showthat dilute SC1 provides faster removal of particles, which isalso verified by the analytical analysis. Particle removal …


Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci Jun 2011

Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci

Ahmed A. Busnaina

Alternating electric field is used to assemble gold nanoparticle nanowires from liquid suspensions. The effects of electrode geometry and the dielectrophoresis force on the chaining and branching of nanowire formation are investigated. The nanowire assembly processes are modeled using finite element calculations, and the particle trajectories under the combined influence of dielectrophoresis force and viscous drag are simulated. Nanoparticle nanowires with 10 nm resolution are fabricated. The wires can be further oriented along an externally introduced flow. This work provides an approach towards rapid assembly and organization of ultrasmall nanoparticle networks.


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Jun 2011

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Ahmed A. Busnaina

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.