Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Nanoscience and Nanotechnology

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Dec 2011

Formation Of Organized Nanostructures From Unstable Bilayers Of Thin Metallic Liquids, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mikhail Khenner

Dewetting of pulsed-laser irradiated, thin (< 20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.


Study On The Use Of Mgal Hydrotalcites As Solid Heterogeneous Catalysts For Biodiesel Production, João F. Gomes Dec 2011

Study On The Use Of Mgal Hydrotalcites As Solid Heterogeneous Catalysts For Biodiesel Production, João F. Gomes

João F Gomes

This paper, reports experimental work on the use of new heterogeneous solid basic catalysts for biodiesel production: double oxides of Mg and Al, produced by calcination, at high temperature, of MgAl lamellar structures, the hydrotalcites (HT). The most suitable catalyst system studied are hydrotalcite Mg:Al 2:1 calcinated at 507 ºC and 700 ºC, leading to higher values of FAME also in the second reaction stage. One of the prepared catalysts resulted in 97.1 % Fatty acids methyl esters (FAME) in the 1st reaction step, 92.2 % FAME in the 2nd reaction step and 34 % FAME in the 3rd reaction …


Notice On A Case Study On The Utilization Of Wind Energy Potential On A Remote And Isolated Small Wastewater Treatment Plant, João F. Gomes Aug 2011

Notice On A Case Study On The Utilization Of Wind Energy Potential On A Remote And Isolated Small Wastewater Treatment Plant, João F. Gomes

João F Gomes

Small wastewater treatment plants (WWTP) are frequently located, by necessity, in remote and isolated sites, which increases the difficulty of its energy supply. Some of them are located near the seaside, in environmental sensible zones, and due to tourism activity of these sites, seasonal effects related with population size fluctuation can occur, which can originate certain inefficiencies concerning WWTP design and energy supply. The objective of this paper is to describe a step by step procedure for evaluation of the wind potential of sites that are dependent of in-situ energy generation, as well as, a case study on the utilization …


Metamaterials On Parylene Thin Film Substrates: Design, Fabrication, And Characterization At Terahertz Frequency, Xianliang Liu, Samuel Macnaughton, David Shrekenhamer, Hu Tao, Selvapraba Selvarasah, Atcha Totachawattana, Richard Averitt, Mehmet Dokmeci, Sameer Sonkusale, Willie Padilla Jun 2011

Metamaterials On Parylene Thin Film Substrates: Design, Fabrication, And Characterization At Terahertz Frequency, Xianliang Liu, Samuel Macnaughton, David Shrekenhamer, Hu Tao, Selvapraba Selvarasah, Atcha Totachawattana, Richard Averitt, Mehmet Dokmeci, Sameer Sonkusale, Willie Padilla

Mehmet R. Dokmeci

We design, fabricate, and characterize terahertz (THz) resonant metamaterials on parylene free-standing thin film substrates. Several different metamaterials are investigated and our results show strong electromagnetic responses at THz frequencies ranging from 500 GHz to 2.5 THz. The complex frequency dependent dielectric properties of parylene are determined from inversion of reflection and transmission data, thus indicating that parylene is an ideal low loss substrate or coating material. The biostable and biocompatible properties of parylene coupled with the multifunctional exotic properties of metamaterials indicate great potential for medical purposes such as THz imaging for skin cancer detection.


Synthesis Of Ordered Arrays Of Multiferroic Nife₂O₄-Pb(Zr₀.₅₂Ti₀.₄₈)O₃ Core-Shell Nanowires, Ming Liu, Xin Li, Hassan Imrane, Yajie Chen, Trevor L. Goodrich, Zhuhua Cai, Katherine S. Ziemer, Jian Y. Huang, Nian X. Sun Jan 2011

Synthesis Of Ordered Arrays Of Multiferroic Nife₂O₄-Pb(Zr₀.₅₂Ti₀.₄₈)O₃ Core-Shell Nanowires, Ming Liu, Xin Li, Hassan Imrane, Yajie Chen, Trevor L. Goodrich, Zhuhua Cai, Katherine S. Ziemer, Jian Y. Huang, Nian X. Sun

Katherine S. Ziemer

A synthesis method was developed for producing core-shell nanowire arrays, which involved a combination of a modified sol-gel process, electrochemical deposition, and subsequent oxidization in anodized nanoporous alumina membranes. This method was applied to generate ordered arrays of one dimensional multiferroic NiFe₂O₄ core and Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT) shell nanostructures. Extensive microstructural, magnetic, and ferroelectric characterizations confirmed that the regular arrays of core-shell multiferroic nanostructures were composed of a spinel NiFe₂O₄ core and perovskite PZT shell. This synthesis method can be readily extended to prepare different core-shell nanowire arrays and is expected to pave the way for one dimensional core-shell nanowire arrays.


Study On The Glycerolysis Reaction Of High Free Fatty Acid Oils For Use As Biodiesel Feedstock, João F. Gomes Jan 2011

Study On The Glycerolysis Reaction Of High Free Fatty Acid Oils For Use As Biodiesel Feedstock, João F. Gomes

João F Gomes

Biodiesel is the main alternative to fossil diesel and it may be produced from different feedstocks such as semi-refined vegetable oils, waste frying oils or animal fats. However, these feedstocks usually contain significant amounts of free fatty acids (FFA) that make them inadequate for the direct base catalyzed transesterification reaction (where the FFA content should be lower than 4%). The present work describes a possible method for the pre-treatment of oils with high content of FFA (20 to 50%) by esterification with glycerol. In order to reduce the FFA content, the reaction between these FFA and an esterification agent is …


Design Of A New Test Chamber For Evaluation Of The Toxicity Of Rubber Infill, João F. Gomes Jan 2011

Design Of A New Test Chamber For Evaluation Of The Toxicity Of Rubber Infill, João F. Gomes

João F Gomes

A test chamber was projected and built (according to ISO 16000-9 Standard) to simulate atmospheric conditions experienced by rubber infill (when applied in synthetic turf pitches) and measure accurately the airborne emissions of pollutants such as dusts and volatile organic compounds (VOC), as well as pollutants present in leacheates. It should be pointed out that standard ISO 16000-9 is only concerned with the determination of the emission of VOC from building products and furnishing (not specific of synthetic turf materials), while other standards are concerned with the emission of leacheates only. This procedure is to be considered as a technical …


What Is A Chemical Engineer ?, João F. Gomes Jan 2011

What Is A Chemical Engineer ?, João F. Gomes

João F Gomes

No abstract provided.


On The Toxicological Effects Of Airborne Nanoparticles From Welding Processes, João F. Gomes Jan 2011

On The Toxicological Effects Of Airborne Nanoparticles From Welding Processes, João F. Gomes

João F Gomes

No abstract provided.


Nanosized Molecular Sieves Utilized As An Environmentally Friendly Alternative To Antioxidants For Lubricant Oils, Eng-Poh Ng Dr. Jan 2011

Nanosized Molecular Sieves Utilized As An Environmentally Friendly Alternative To Antioxidants For Lubricant Oils, Eng-Poh Ng Dr.

Eng-Poh Ng

Lubricants play a significant part in current environmental considerations since they are an integral and indispensable component of modern technology. The production, application and disposal of the lubricants have to follow increasingly strict requirements for protecting the environment and living organisms. In this respect, molecular sieve (LTL type zeolite) is investigated as a potential environmentally friendly alternative to traditional antioxidant additives for lubricant oils. Accelerated oxidation experiments using pure base oil and additivated base oil in the presence of the LTL molecular sieve are carried out in parallel, and the oxidation processes are monitored by FT-IR spectroscopy, spectrophotometry, chromatography, total …


Electrochemical Glutamate Biosensing With Nanocube And Nanosphere Augmented Single-Walled Carbon Nanotube Networks: A Comparative Study, Jonathan C. Claussen, Mayra S. Artiles, Eric S. Mclamore, Subhashree Mohanty, Jin Shi, Jenna L. Rickus, Timothy S. Fisher, D. Marshall Porterfield Jan 2011

Electrochemical Glutamate Biosensing With Nanocube And Nanosphere Augmented Single-Walled Carbon Nanotube Networks: A Comparative Study, Jonathan C. Claussen, Mayra S. Artiles, Eric S. Mclamore, Subhashree Mohanty, Jin Shi, Jenna L. Rickus, Timothy S. Fisher, D. Marshall Porterfield

Jonathan C. Claussen

We describe two hybrid nanomaterial biosensor platforms, based on networks of single-walled carbon nanotubes (SWCNTs) enhanced with Pd nanocubes and Pt nanospheres and grown in situ from a porous anodic alumina (PAA) template. These nanocube and nanosphere SWCNT networks are converted into glutamate biosensors by immobilizing the enzyme glutamate oxidase (cross-linked with gluteraldehyde) onto the electrode surface. The Pt nanosphere/SWCNT biosensor outperformed the Pd nanocube/SWCNT biosensor and previously reported similar nanomaterial-based biosensors by amperometrically monitoring glutamate concentrations with a wide linear sensing range (50 nM to 1.6 mM) and a small detection limit (4.6 nM, 3s). These results combined with …


Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield Jan 2011

Effects Of Carbon Nanotube-Tethered Nanosphere Density On Amperometric Biosensing: Simulation And Experiment, Jonathan C. Claussen, James B. Hengenius, Monique M. Wickner, Timothy S. Fisher, David M. Umulis, D. Marshall Porterfield

Jonathan C. Claussen

Nascent nanofabrication approaches are being applied to reduce electrode feature dimensions from the microscale to the nanoscale, creating biosensors that are capable of working more efficiently at the biomolecular level. The development of nanoscale biosensors has been driven largely by experimental empiricism to date. Consequently, the precise positioning of nanoscale electrode elements is typically neglected, and its impact on biosensor performance is subsequently overlooked. Herein, we present a bottom-up nanoelectrode array fabrication approach that utilizes low-density and horizontally oriented single-walled carbon nanotubes (SWCNTs) as a template for the growth and precise positioning of Pt nanospheres. We further develop a computational …


Stability And Growth Behavior Of Transition Metal Nanoparticles In Ionic Liquids Prepared By Thermal Evaporation: How Stable Are They Really?, Kai Richter, Alexander Birkner, Anja V. Mudring Jan 2011

Stability And Growth Behavior Of Transition Metal Nanoparticles In Ionic Liquids Prepared By Thermal Evaporation: How Stable Are They Really?, Kai Richter, Alexander Birkner, Anja V. Mudring

Anja V. Mudring

Recently we developed an access to metal- and metal-oxide colloids based on thermal evaporation of metals into ionic liquids (ILs). Here we present systematic studies on the long-time stability of gold and copper nanoparticles (NPs) in different ILs. The influence of metal concentration and temperature on the ripening of the as-prepared gold NPs in different ILs was investigated by transmission electron microscopy (TEM) and UV-vis absorption measurements. Short alkyl chain-length-methyl-imidazolium salts with weakly coordinating perfluorinated counter anions (PF6, BF4 or Tf2N, bis(trifluoromethanesulfonyl)amide) were found to be better stabilizers compared to ILs with cations bearing long alkyl chains (trihexyltetradecylphosphonium, 1-octyl-3-methylimidazolium) and …


Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine Jan 2011

Stability Of A Strongly Anisotropic Thin Epitaxial Film In A Wetting Interaction With Elastic Substrate, Mikhail Khenner, Wondimu T. Tekalign, Margo S. Levine

Mikhail Khenner

The linear dispersion relation for longwave surface perturbations, as derived by Levine et al. Phys. Rev. B 75, 205312 (2007) is extended to include a smooth surface energy anisotropy function with a variable anisotropy strength (from weak to strong, such that sharp corners and slightly curved facets occur on the corresponding Wulff shape). Through detailed parametric studies it is shown that a combination of a wetting interaction and strong anisotropy, and even a wetting interaction alone results in complicated linear stability characteristics of strained and unstrained films.


Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner Jan 2011

Modeling Diverse Physics Of Nanoparticle Self-Assembly In Pulsed Laser-Irradiated Metallic Films, Mikhail Khenner

Mikhail Khenner

Presents physics behind dewetting of thin liquid films and mathematical/computational modeling tools (Educational/Research presentation for senior physics majors).


Europium(Iii) Fluoride Nanoparticles From Ionic Liquids: Structural, Morphological, And Luminescent Properties, Chantal Lorbeer, Joanna Cybinska, Anja V. Mudring Jan 2011

Europium(Iii) Fluoride Nanoparticles From Ionic Liquids: Structural, Morphological, And Luminescent Properties, Chantal Lorbeer, Joanna Cybinska, Anja V. Mudring

Anja V. Mudring

Inorganic luminescent materials (phosphors) find widespread scientific and industrial applications. For potential applications, nanoscale phosphors are favored because of the reduced scattering and the possibility to miniaturize devices. In such materials, the optical behavior is strongly dependent on impurities or defects in the crystal lattice, so that a well-defined reaction protocol with fixed parameters is compulsory to ensure the quality of the obtained material. The fast and facile conversion of europium acetate via microwave radiation with and in different tetrafluoroborate ionic liquids to oxygen-free, hexagonal EuF3 nanoparticles is investigated in detail. The study of the influence of the different reaction …