Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Chemistry

Nanocomposites

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Enhanced Optical, Visible Light Catalytic And Electrochemical Properties Of Au@Tio2 Nanocomposites, Mohammad Mansoob Khan Dr, Sajid A. Ansari Mar 2013

Enhanced Optical, Visible Light Catalytic And Electrochemical Properties Of Au@Tio2 Nanocomposites, Mohammad Mansoob Khan Dr, Sajid A. Ansari

Dr. Mohammad Mansoob Khan

Au@TiO2 nanocomposites and pure TiO2 were successfully used to know the effect of Au on TiO2 and their comparative optical, visible light catalytic andelectrochemical activities were investigated. Optical parameters such as band gap energy (Eg = 2.4 eV), absorption coefficient (a), refractive index (n) and dielectric constants (s) have been determined using different methods. Visible light (590 nm) catalytic activity of Au@TiO2 nanocomposites was performed for reducing methyl orange (MO) under visible light irradiation. CV, EIS and DPV studies demonstrate that Au@TiO2 nanocomposites exhibit redox behavior, charged its surface by accumulating electrons, store and release the electrons.


Enhancement In The Photocatalytic Activity Of Au@Tio2 Nanocomposites By Pretreatment Of Tio2 With Uv Light, Mohammad Mansoob Khan Dr, M. H. Cho Dr Dec 2011

Enhancement In The Photocatalytic Activity Of Au@Tio2 Nanocomposites By Pretreatment Of Tio2 With Uv Light, Mohammad Mansoob Khan Dr, M. H. Cho Dr

Dr. Mohammad Mansoob Khan

A novel, efficient and controlled protocol for the synthesis and enhanced photocatalytic activity of Au@TiO2 nanocomposite is developed. TiO2 (P25) was pretreated by employing UV light (λ = 254 nm) and the pretreated TiO2 was uniformly decorated by gold nanoparticles (AuNPs) in presence of sodium citrate and UV light. UV pretreatment makes the TiO2 activated, as electrons were accumulated within the TiO2 in the conduction band. These accumulated electrons facilitate the formation of AuNPs which were of very small size (2-5 nm), similar morphology and uniformly deposited at TiO2 surface. It leads to formation of stable and crystalline Au@TiO2 nanocomposites. …