Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Nanoscience and Nanotechnology

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite As An Efficient Oxygen Reduction Reaction Catalyst And Supercapacitor Material, Shaikh Parwaiz, Kousik Bhunia, Ashok Kumar Das, Mohammad Mansoob Khan Dr, Debabrata Pradhan Aug 2017

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite As An Efficient Oxygen Reduction Reaction Catalyst And Supercapacitor Material, Shaikh Parwaiz, Kousik Bhunia, Ashok Kumar Das, Mohammad Mansoob Khan Dr, Debabrata Pradhan

Dr. Mohammad Mansoob Khan

 Design and development of highly active and durable oxygen reduction reaction (ORR) catalyst to replace Pt- and Pt-based materials are present challenges in fuel cell research including direct methanol fuel cells (DMFC). The methanol crossover and its subsequent oxidation at the cathode is another unwanted issue that reduces the efficiency of DMFC. Herein we report cobalt-doped ceria (Co-CeO2) as a promising electrocatalyst with competent ORR kinetics mainly through a four-electron reduction pathway, and it surpasses Pt/C by a great margin in terms of stability and methanol tolerance. The Co-CeO2 nanoparticles of diameter 4–7 nm were uniformly …


The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed A. Busnaina Dec 2015

The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed A. Busnaina

Ahmed A. Busnaina

The effect of frictional and adhesion forces attributed to slurry particles on the quality of copper surfaces was experimentally investigated during copper chemical mechanical planarization process. The highest frictional force of 9 Kgf and adhesion force of 5.83 nN were observed in a deionized water-based alumina slurry. On the other hand, the smallest frictional force of 4 Kgf and adhesion force of 0.38 nN were measured in an alumina slurry containing citric acid. However, frictional (6 Kgf) and adhesion (1 nN) forces of silica particles in the slurry were not significantly changed regardless of the addition of citric acid. These …


The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed A. Busnaina Dec 2015

The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed A. Busnaina

Ahmed A. Busnaina

The effect of frictional and adhesion forces attributed to slurry particles on the quality of copper surfaces was experimentally investigated during copper chemical mechanical planarization process. The highest frictional force of 9 Kgf and adhesion force of 5.83 nN were observed in a deionized water-based alumina slurry. On the other hand, the smallest frictional force of 4 Kgf and adhesion force of 0.38 nN were measured in an alumina slurry containing citric acid. However, frictional (6 Kgf) and adhesion (1 nN) forces of silica particles in the slurry were not significantly changed regardless of the addition of citric acid. These …


Analytical Models For Atomic Friction, Yalin Dong, Ajay Vadakkepatt, Ashlie Martini Apr 2015

Analytical Models For Atomic Friction, Yalin Dong, Ajay Vadakkepatt, Ashlie Martini

Dr. Yalin Dong

In this methods article, we describe application of Prandtl–Tomlinson models and their extensions to interpret dry atomic-scale friction. The goal is to provide a practical overview of how to use these models to study frictional phenomena. We begin with the fundamental equations and build on them step-by-step—from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. The intention is to bridge the gap between theoretical analysis, numerical implementation, and predicted physical phenomena. In the process, we provide an introductory manual with example computer programs …


Au@Tio2 Nanocomposites For The Catalytic Degradation Of Methyl Orange And Methylene Blue: An Electron Relay Effect, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho Aug 2014

Au@Tio2 Nanocomposites For The Catalytic Degradation Of Methyl Orange And Methylene Blue: An Electron Relay Effect, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Au@TiO2 nanocomposites were used for the catalytic degradation of methyl orange and methylene blue by NaBH4. A detail pathway for step by step reduction, oxidation and complete mineralization of intermediates into the respective end-products was established by UV-vis spectroscopy, chemical oxygen demand, ion chromatography and cyclic voltammetry (CV). CV studies confirmed that the dyes were reduced and oxidized to the end-products by NaBH4 in the presence of Au@TiO2 nanocomposites and O2•, •OH and HO2• radicals generated in-situ. Results suggest that Au@TiO2 nanocomposites not only assist in the decolorization of dyes, but also promote their complete mineralization into harmless end-products.


Biogenic Fabrication Of Au@Ceo2 Nanocomposite With Enhanced Visible Light Activity, Mohammad Mansoob Khan Dr, S. A. Ansari, M. O. Ansari, B. K. Min, J Lee, M. H. Cho Apr 2014

Biogenic Fabrication Of Au@Ceo2 Nanocomposite With Enhanced Visible Light Activity, Mohammad Mansoob Khan Dr, S. A. Ansari, M. O. Ansari, B. K. Min, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

This study reports a biogenic approach to the synthesis of Au@CeO2 nanocomposite using electrochemically active biofilms (EABs) in water under normal pressure and 30 °C. This work presents the results of extensive morphological, structural, optical, visible light photoelectrochemical and photocatalytic studies of Au@CeO2 nanocomposite. The presence of a large number of interfaces between Au nanoparticles and CeO2 for charge transfer is believed to play a key role in enhancing the optical and visible light photoelectrochemical and photocatalytic performance of Au@CeO2 nanocomposite. The enhanced visible light degradation of methyl orange and methylene blue by Au@CeO2 nanocomposite was much higher than that …


Bovine Serum Albumin (Bsa) And Cleaved-Bsa Conjugated Ultrasmallgd2o3nanoparticles: Synthesis, Characterization, And Application To Mri Contrast Agents, Md Wasi Ahmad, Cho Rong Kim, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Gang Ho Lee Dec 2013

Bovine Serum Albumin (Bsa) And Cleaved-Bsa Conjugated Ultrasmallgd2o3nanoparticles: Synthesis, Characterization, And Application To Mri Contrast Agents, Md Wasi Ahmad, Cho Rong Kim, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Gang Ho Lee

Dr. Mohammad Wasi Ahmad (Md Wasi Ahmad)

No abstract provided.


Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho Dec 2013

Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

The development of coupled photoactive materials (metal/semiconductor) has resulted in significant advancements in heterogeneous visible light photocatalysis. This work reports the novel biogenic synthesis of visible light active Ag–ZnO nanocomposite for photocatalysis and photoelectrode using an electrochemically active biofilm (EAB). The results showed that the EAB functioned as a biogenic reducing tool for the reduction of Ag+, thereby eliminating the need for conventional reducing agents. The as-prepared Ag–ZnO nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic experiments showed that the Ag–ZnO nanocomposite possessed excellent visible light photocatalytic activity …


Oxygen Vacancy Induced Band Gap Narrowing Of Zno Nanostructure By Electrochemically Active Biofilm, Mohammad Mansoob Khan Dr, A. A. Ansari, S. Kalathil, A. Nisar, J. Lee, M. H. Cho Jul 2013

Oxygen Vacancy Induced Band Gap Narrowing Of Zno Nanostructure By Electrochemically Active Biofilm, Mohammad Mansoob Khan Dr, A. A. Ansari, S. Kalathil, A. Nisar, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, x-ray photoelectron spectroscopy, electron paramagnetic …


Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee May 2013

Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee

Dr. Mohammad Mansoob Khan

Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial …


Enhanced Optical, Visible Light Catalytic And Electrochemical Properties Of Au@Tio2 Nanocomposites, Mohammad Mansoob Khan Dr, Sajid A. Ansari Mar 2013

Enhanced Optical, Visible Light Catalytic And Electrochemical Properties Of Au@Tio2 Nanocomposites, Mohammad Mansoob Khan Dr, Sajid A. Ansari

Dr. Mohammad Mansoob Khan

Au@TiO2 nanocomposites and pure TiO2 were successfully used to know the effect of Au on TiO2 and their comparative optical, visible light catalytic andelectrochemical activities were investigated. Optical parameters such as band gap energy (Eg = 2.4 eV), absorption coefficient (a), refractive index (n) and dielectric constants (s) have been determined using different methods. Visible light (590 nm) catalytic activity of Au@TiO2 nanocomposites was performed for reducing methyl orange (MO) under visible light irradiation. CV, EIS and DPV studies demonstrate that Au@TiO2 nanocomposites exhibit redox behavior, charged its surface by accumulating electrons, store and release the electrons.


Enhanced Performance Of A Microbial Fuel Cell Using Cnt/Mno2 Nanocomposites As A Bioanode Materials, S. Kalathil, A Hoa, J Shim, Mohammad Mansoob Khan Dr, J Lee, M H. Cho Jan 2013

Enhanced Performance Of A Microbial Fuel Cell Using Cnt/Mno2 Nanocomposites As A Bioanode Materials, S. Kalathil, A Hoa, J Shim, Mohammad Mansoob Khan Dr, J Lee, M H. Cho

Dr. Mohammad Mansoob Khan

The anode electrode material is a crucial factor for the overall performance of a microbial fuel cell (MFC). In this study, a plain carbon paper modified with the CNT/MnO 2 nanocomposite was used as the anode for the MFC and a mixed culture inoculum was used as the biocatalyst. The modified anode showed better electrochemical performance than that of plain carbon paper, and Brunauer Emmett Teller (BET) analysis showed the high surface area (94.6 m2/g) of the composite. The Mn4+ in the nanocomposite may enhance the electron transfer between the microorganisms and the anode material which facilitates electron conduction. Additionally, …


Surface Coated Eu(Oh)3 Nanorods: A Facile Synthesis, Characterization, Mr Relaxivities And In Vitro Cytotoxicity, Krishna Katte, Ja Young Park, Wenlong Xu, Badrul Alam Bony, Woo Cheol Heo, Tirusew Tegafaw, Cho Rong Kim, Md Wasi Ahmad, Seonguk Jin, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Ji Yun Jeong, Gang Ho Lee Dec 2012

Surface Coated Eu(Oh)3 Nanorods: A Facile Synthesis, Characterization, Mr Relaxivities And In Vitro Cytotoxicity, Krishna Katte, Ja Young Park, Wenlong Xu, Badrul Alam Bony, Woo Cheol Heo, Tirusew Tegafaw, Cho Rong Kim, Md Wasi Ahmad, Seonguk Jin, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Ji Yun Jeong, Gang Ho Lee

Dr. Mohammad Wasi Ahmad (Md Wasi Ahmad)

No abstract provided.


Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho Dec 2012

Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho

Dr. Mohammad Mansoob Khan

A novel, rapid, one-pot, and facile approach was developed to synthesize positively charged gold nanoparticles [(+) AuNPs] by employing an aqueous solution of HAuCl4·3H2O as a precursor at 30 °C and a stainless-steel mesh as a reducing agent. The penetration of Cl− ions into the stainless-steel surface results in corrosion on the stainless-steel surface and excretion of electrons which are used for reduction of Au3+ → Au0. As a result, (+) AuNPs 5-20 nm in size, mostly monodispersed, were synthesized within 3 h. The as-synthesized AuNPs were charaterized by UV-vis, DLS, XRD, TEM, HR-TEM, EDX and SAED. The utilization of …


Positively Charged Gold Nanoparticles Synthesized By Electrochemically Active Biofilm – A Biogenic Approach, Mohammad Mansoob Khan Dr, S. Kalathil, J. Lee, Moo Hwan Cho Dec 2012

Positively Charged Gold Nanoparticles Synthesized By Electrochemically Active Biofilm – A Biogenic Approach, Mohammad Mansoob Khan Dr, S. Kalathil, J. Lee, Moo Hwan Cho

Dr. Mohammad Mansoob Khan

Positively charged gold nanoparticles [(+) AuNPs] of 5-20 nm were synthesized by using electrochemically active biofilm (EAB) formed on a stainless steel mesh, within 30 minutes, in aqueous solution containing HAuCl4 as a precursor and sodium acetate as an electron donor. Electrochemically active bacteria present on biofilm oxidize the sodium acetate by producing electrons. Simultaneously, stainless steel also provides electrons because of the Cl− ions penetration into the stainless steel. Combined effect of both the EAB and stainless steel mesh enhances the availability of electrons for the reduction of Au3+ in the solution, which makes this synthesis efficient and fast. …


The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed Busnaina Apr 2012

The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed Busnaina

Jin-Goo Park

The effect of frictional and adhesion forces attributed to slurry particles on the quality of copper surfaces was experimentally investigated during copper chemical mechanical planarization process. The highest frictional force of 9 Kgf and adhesion force of 5.83 nN were observed in a deionized water-based alumina slurry. On the other hand, the smallest frictional force of 4 Kgf and adhesion force of 0.38 nN were measured in an alumina slurry containing citric acid. However, frictional (6 Kgf) and adhesion (1 nN) forces of silica particles in the slurry were not significantly changed regardless of the addition of citric acid. These …


Fluorescein-Polyethyleneimine Coated Gadolinium Oxide Nanoparticles As T1 Magnetic Resonance Imaging (Mri)–Cell Labeling (Cl) Dual Agents, Wenlong Xu, Ja Young Park, Krishna Kattel, Md Wasi Ahmad, Badrul Alam Bony, Woo Choul Heo, Seonguk Jin, Jang Woo Park, Yongmin Chang, Tae Jeong Kim, Ji Ae Park, Ji Yeon Do, Kwon Seok Chae, Gang Ho Lee Dec 2011

Fluorescein-Polyethyleneimine Coated Gadolinium Oxide Nanoparticles As T1 Magnetic Resonance Imaging (Mri)–Cell Labeling (Cl) Dual Agents, Wenlong Xu, Ja Young Park, Krishna Kattel, Md Wasi Ahmad, Badrul Alam Bony, Woo Choul Heo, Seonguk Jin, Jang Woo Park, Yongmin Chang, Tae Jeong Kim, Ji Ae Park, Ji Yeon Do, Kwon Seok Chae, Gang Ho Lee

Dr. Mohammad Wasi Ahmad (Md Wasi Ahmad)

We report the synthesis, characterization and application of highly water-soluble fluoresceinpolyethyleneimine (PEI) coated gadolinium oxide (Gd2O3) nanoparticles to magnetic resonance imaging (MRI) and cell labeling (CL). The average particle diameter and average hydrodynamic diameter were estimated to be 3.92 and 7.5 nm, respectively. Fluorescein-PEI was prepared from EDC/NHS coupling method. The surface coating was characterized by the FT-IR absorption spectrum and the surface coating amount was estimated to be 22.42 wt% from a TGA analysis, corresponding to 0.65 nm22 grafting density. The fluorescein-PEI coated gadolinium oxide nanoparticles showed r1 and r2 of 6.76 and 20.27 s21mM21, respectively, and a strong …


Enhancement In The Photocatalytic Activity Of Au@Tio2 Nanocomposites By Pretreatment Of Tio2 With Uv Light, Mohammad Mansoob Khan Dr, M. H. Cho Dr Dec 2011

Enhancement In The Photocatalytic Activity Of Au@Tio2 Nanocomposites By Pretreatment Of Tio2 With Uv Light, Mohammad Mansoob Khan Dr, M. H. Cho Dr

Dr. Mohammad Mansoob Khan

A novel, efficient and controlled protocol for the synthesis and enhanced photocatalytic activity of Au@TiO2 nanocomposite is developed. TiO2 (P25) was pretreated by employing UV light (λ = 254 nm) and the pretreated TiO2 was uniformly decorated by gold nanoparticles (AuNPs) in presence of sodium citrate and UV light. UV pretreatment makes the TiO2 activated, as electrons were accumulated within the TiO2 in the conduction band. These accumulated electrons facilitate the formation of AuNPs which were of very small size (2-5 nm), similar morphology and uniformly deposited at TiO2 surface. It leads to formation of stable and crystalline Au@TiO2 nanocomposites. …