Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Journal

Materials Science and Engineering

Lithium ion batteries

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Preparation And Lithium Storage Performance Of Sn-Snsb Nanoparticles, Yao Xiao, Jiao-Hong Wu, Qi Wang, Ling Huang, Jun-Tao Li, Shi-Gang Sun Aug 2014

Preparation And Lithium Storage Performance Of Sn-Snsb Nanoparticles, Yao Xiao, Jiao-Hong Wu, Qi Wang, Ling Huang, Jun-Tao Li, Shi-Gang Sun

Journal of Electrochemistry

Tin was widely studied as alternative anode material to carbon for lithium-ion batteries thanks to its much higher theoretical capacity. However, a pure tin electrode suffers severely from its poor cycleability due to mechanical fatigue caused by volume change during lithium insertion and extraction processes. Tin-based alloy may improve the cycleability property of tin electrode. In this article, we report facile synthesis of spherical Sn-SnSb nanopartciles using a simple solvent-thermal approach. It is amazing to find that the spherical Sn-SnSb nanoparticles can circumvent volume changes effectively during charge-discharge process. Electrochemical discharge/charge results show that the spherical Sn-SnSb nanoparticles electrode exhibits …


Applications Of Raman Spectroscopy Technique In Lithium Ion Batteries, Liang Zhao, Yong-Sheng Hu, Hong Li, Zhao-Xiang Wang, Hong-Xing Xu, Xue-Jie Huang, Li-Quan Chen Feb 2011

Applications Of Raman Spectroscopy Technique In Lithium Ion Batteries, Liang Zhao, Yong-Sheng Hu, Hong Li, Zhao-Xiang Wang, Hong-Xing Xu, Xue-Jie Huang, Li-Quan Chen

Journal of Electrochemistry

The Raman spectroscopy has been widely used in the study of lithium ion batteries.In this short review,we gave some examples of the applications of Raman spectroscopy in the study of electrode materials including carbonaceous materials,spinel LiMxMn2-x O4,LiFePO4,as well as polymer electrolytes,room temperaturemolten salt electrolytes and the solid-electrolyte interphase layers.The advantages and disadvantages of the ex-situ and in-situ Raman spectrum techniques are discussed.Using new Raman techniques to investigate Li-ion batteries are suggested.


Nano-Sized Cobalt-Based Oxides As Negative Electrode For Lithium-Ion Batteries, Feng Huang, Zheng-Yong Yuan, Yun-Hong Zhou, Ju-Tang Sun Nov 2002

Nano-Sized Cobalt-Based Oxides As Negative Electrode For Lithium-Ion Batteries, Feng Huang, Zheng-Yong Yuan, Yun-Hong Zhou, Ju-Tang Sun

Journal of Electrochemistry

Nanosized cobalt-based oxide (Co 3O 4, CoB 1.36 O 2.8 and CoB 0.5 Al 0.1 O 1.5 ) samples were prepared by rheological phase method and were tested as anodes in secondary lithium batteries. The cells were cycled between 0.01V and 3.00 V. The best electrochemical performance was obtained from the Li/Co 3O 4 cell, which retained 95% of its initial capacity (931 mAh/g) after 30 cycles. The doping of B, Al reduced the reversible capacity during the first discharge/charge cycle, and the quantity of reversible capacity reduced with B, A1 increasing. The modifying structures at difference charge and discharge …


The Studies On Nanosized Materials For Lithium Ion Batteries, Hong Li, Jing-Ze Li, Li-Hong Shi, Guang-Yan Zhu, Qing Chen, Wei Lu, Xue-Jie Huang, Li-Quan Chen May 2000

The Studies On Nanosized Materials For Lithium Ion Batteries, Hong Li, Jing-Ze Li, Li-Hong Shi, Guang-Yan Zhu, Qing Chen, Wei Lu, Xue-Jie Huang, Li-Quan Chen

Journal of Electrochemistry

Our recent works about nanosized materials for lithium ion batteries are reported, including the synthesis of nanosized Sb, SnSb, CuSn x, Si and CuS, their electrochemical performance as anode or cathode active materials,the variation of crystal structure and morphology during discharge and charge cycling. In addition,the self_plasticization of lithium salt with nanosized anion ion in polymer electrolyte,the influence of the electrochemical Li_doping on the Raman spectra and photoluminescence of nano_Si are also introduced. Furthermore,the relationship between intrinsic properties of nanosized materials and their electrochemical behaviors are discussed. The prospect of nanosized materials for lithium ion batteries is drawn.