Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Nanoscience and Nanotechnology

Preparation And Lithium Storage Properties Of Carbon Confined Li3Vo4 Nano Materials, Jia-Qi Fan, Huan-Qiao Song, Jia-Ying An, Amantai A-Yi-Da-Na, Mo Chen Nov 2023

Preparation And Lithium Storage Properties Of Carbon Confined Li3Vo4 Nano Materials, Jia-Qi Fan, Huan-Qiao Song, Jia-Ying An, Amantai A-Yi-Da-Na, Mo Chen

Journal of Electrochemistry

Li3VO4, as a promising anode material for lithium ion batteries, has been widely studied because of its low and safe voltage, and large capacity. However, its poor electronic conductivity impedes the practical application of Li3VO4 particularly at high rates. In this paper, carbon confined Li3VO4 nano materials (Li3VO4/C) were synthesized by hydrothermal and solid-phase method, and for comparison, the Li3VO4 (N) nano materials without carbon confinement and Li3VO4 (B) materials were also synthesized by pure solid-phase method. The composition, structure, morphology and specific …


Charge-Dependence Of Dissolution/Deposition Energy Barrier On Cu(111) Electrode Surface By Multiscale Simulations, Hang Qiao, Yong Zhu, Sheng Sun, Tong-Yi Zhang Oct 2023

Charge-Dependence Of Dissolution/Deposition Energy Barrier On Cu(111) Electrode Surface By Multiscale Simulations, Hang Qiao, Yong Zhu, Sheng Sun, Tong-Yi Zhang

Journal of Electrochemistry

Behaviors of electrified interface under different applied potentials/charges play the central role in electroplating process and electrochemical corrosion. The mechanism, however, is unclear yet for a surface atom dissolving/depositing from/on an electrode surface under an applied potential. The energy barrier along the reaction path is the key variable. The present work conductes hybrid first-principle/hybrid calculations to study the direct and indirect dissolution/deposition of a Cu atom on perfect/stepped Cu(111) planar electrodes in an electrolyte under different excess charges. Energy profiles present a linear relationship between the energies of the initial/final state and the activation state of different reaction paths under …


Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang Oct 2023

Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang

Journal of Electrochemistry

With the rapid development of electric vehicles, enormous demands are made for higher energy density, better cycling performance and lower cost of lithium-ion batteries (LIBs). As an important high capacity cathode material for LIBs, the high nickel layered oxide material LiNi0.8Co0.1Mn0.1O2(NCM811) can reach an energy density of 760 Wh·kg-1. The ultra-high nickel ternary positive electrode material (LiNi1-x-yCoxMnyO2, x ≥ 0.90) has a specific capacity of more than 210 mAh·g-1, and can realize higher energy density. Besides, an ultra-high nickel material …


Asymmetric Electrode-Electrolyte Interfaces For High-Performance Rechargeable Lithium-Sulfur Batteries, Jia Chou, Ya-Hui Wang, Wen-Peng Wang, Sen Xin, Yu-Guo Guo Sep 2023

Asymmetric Electrode-Electrolyte Interfaces For High-Performance Rechargeable Lithium-Sulfur Batteries, Jia Chou, Ya-Hui Wang, Wen-Peng Wang, Sen Xin, Yu-Guo Guo

Journal of Electrochemistry

With a high cell-level specific energy and a low cost, lithium-sulfur (Li-S) battery has been intensively studied as one of the most promising candidates for competing the next-generation energy storage campaign. Currently, the practical use of Li-S battery is hindered by the rapidly declined storage performance during battery operation, as caused by irreversible loss of electroactive sulfide species at the cathode, dendrite formation at the anode and parasitic reactions at the electrode-electrolyte interface due to unfavorable cathode-anode crosstalk. In this perspective, we propose to stabilize the Li-S electrochemistry, and improve the storage performance of battery by designing asymmetric electrode-electrolyte interfaces …


Effects Of Traps On Photo-Induced Interfacial Charge Transfer Of Ag-Tio2: Photoelectrochemical, Electrochemical And Spectroscopic Characterizations, Zhi-Hao Liang, Jia-Zheng Wang, Dan Wang, Jian-Zhang Zhou, De-Yin Wu Aug 2023

Effects Of Traps On Photo-Induced Interfacial Charge Transfer Of Ag-Tio2: Photoelectrochemical, Electrochemical And Spectroscopic Characterizations, Zhi-Hao Liang, Jia-Zheng Wang, Dan Wang, Jian-Zhang Zhou, De-Yin Wu

Journal of Electrochemistry

In the field of metal-semiconductor composites based plasmon-mediated chemical reactions, a clear and in-depth understanding of charge transfer and recombination mechanisms is crucial for improving plasmonic photocatalytic efficiency. However, the plasmonic photocatalytic reactions at the solid-liquid interface of the electrochemical systems involve complex processes with multiple elementary steps, multiple time scales, and multiple controlling factors. Herein, the combination of photoelectrochemical and electrochemical as well as spectroscopic characterizations has been successfully used to study the effects of traps on the photo-induced interfacial charge transfer of silver-titanium dioxide (Ag-TiO2). The results show that the increase of surface hydroxyl groups may …


Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics, Yong-Bin Zhuang, Jun Cheng Jul 2023

Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics, Yong-Bin Zhuang, Jun Cheng

Journal of Electrochemistry

Band alignments of electrode-water interfaces are of crucial importance for understanding electrochemical interfaces. In the scenario of electrocatalysis, applied potentials are equivalent to the Fermi levels of metals in the electrochemical cells; in the scenario of photo(electro)catalysis, semiconducting oxides under illumination have chemical reactivities toward redox reactions if the redox potentials of the reactions straddle the conduction band minimums (CBMs) or valence band maximums (VBMs) of the oxides. Computational band alignments allow us to obtain the Fermi level of metals, as well as the CBM and VBM of semiconducting oxides with respect to reference electrodes. In this tutorial, we describe …


Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia May 2023

Deep Euteceic Solvents-Assisted Synthesis Of Novel Network Nanostructures For Accelerating Formic Acid Electrooxidation, Jun-Ming Zhang, Xiao-Jie Zhang, Yao Chen, Ying-Jian Fan, You-Jun Fan, Jian-Feng Jia

Journal of Electrochemistry

Deep eutectic solvents (DESs) have been reported as a type of solvent for the controllable synthesis of metal nanostructures. Interestingly, flower-like palladium (Pd) nanoparticles composed of staggered nanosheets and nanospheres are spontaneously transformed into three-dimensional (3D) network nanostructures in choline chloride-urea DESs using ascorbic acid as a reducing agent. Systematic studies have been carried out to explore the formation mechanism, in which DESs itself acts as a solvent and soft template for the formation of 3D flower-like network nanostructures (FNNs). The amounts of hexadecyl trimethyl ammonium bromide and sodium hydroxide also play a crucial role in the anisotropic growth and …


Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang May 2023

Fe Nanoparticles Encapsulated In N-Doped Porous Carbon For Efficient Oxygen Reduction In Alkaline Media, Chun-Yan Li, Rui Zhang, Xiao-Jie Ba, Xiao-Le Jiang, Yao-Yue Yang

Journal of Electrochemistry

Rational design and synthesis of non-precious-metal catalyst plays an important role in improving the activity and stability for oxygen reduction reaction (ORR) but remains a major challenge. In this work, we used a facile approach to synthesize iron nanoparticles encapsulated in nitrogen-doped porous carbon materials (Fe@N-C) from functionalized metal-organic frameworks (MOFs, MET-6). Embedding Fe nanoparticles into the carbon skeleton increases the graphitization degree and the proportion of graphitic N as well as promotes the formation of mesopores in the catalyst. The Fe@N-C-30 catalyst showed the excellent ORR activity in alkaline solutions (E0 = 0.97 V vs. RHE, E1/2 …


Highly Dispersed Pt Nanoparticles Root In Single-Atom Fe Sites In Ldhs Toward Efficient Methanol Oxidation, Qing-Cheng Meng, Lin-Bo Jin, Meng-Ze Ma, Xue-Qing Gao, Ai-Bing Chen, Dao-Jin Zhou, Xiao-Ming Sun Feb 2023

Highly Dispersed Pt Nanoparticles Root In Single-Atom Fe Sites In Ldhs Toward Efficient Methanol Oxidation, Qing-Cheng Meng, Lin-Bo Jin, Meng-Ze Ma, Xue-Qing Gao, Ai-Bing Chen, Dao-Jin Zhou, Xiao-Ming Sun

Journal of Electrochemistry

Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell, which has already attracted growing popularities. However, current methanol oxidation electrocatalysts fall far short of expectations and suffer from excessive use of noble metal, mediocre activity, and rapid decay. Here we report the Pt anchored on NiFe-LDHs surface hybrid for stable methanol oxidation in alkaline media. Based on the high intrinsic methanol oxidation activity of Pt nanoparticles, the substrates NiFe-LDHs further enhanced anti-poisoning ability and maintained unaffected stability after 200,000 s cycle test compared to commercial Pt/C catalyst. The …