Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Nanoscience and Nanotechnology

Surface Composition Structure And Electrochemical Performance Of Aluminum Doped Lifepo4, Huai-Fang Shang, Wei-Feng Huang, Wang-Sheng Hu, Ding-Guo Xia, Zi-Yu Wu Dec 2013

Surface Composition Structure And Electrochemical Performance Of Aluminum Doped Lifepo4, Huai-Fang Shang, Wei-Feng Huang, Wang-Sheng Hu, Ding-Guo Xia, Zi-Yu Wu

Journal of Electrochemistry

Despite there are many successful reports about the preparation of electrode materials with surface coating for lithium ion batteries, the study in surface self-coating of cathode materials using segregation of doping elements and their electrochemical properties is still very rare. The LiFePO4 particles with rich-Al on the surface were synthesized by one step solvothermal route. TEM results demonstrated that the surface of the obtained LiFePO4 particles was well-covered by the amorphous coating. The soft X-ray absorption spectroscopy (XAS) and Auger electron spectroscopy (AES) component analyses revealed that the amorphous coating was composed of LiFe1-xAlxPO …


Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun Dec 2013

Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun

Journal of Electrochemistry

High potential LiCoPO4 cathode material was synthesized by polyol method. Carbon layer of ca. 3 nm thick was coated on the LiCoPO4 surfaces by chemical vapor deposition from methylbenzene. Crystalline structure, morphology and electrochemical performance of the sample were studied by XRD, SEM, TEM, CV and galvanostatic charge/discharge curve. The synthesized material via polyol method showed a pure phase of LiCoPO4. The LiCoPO4/C electrode delivered a high discharge capacity of 132 mAh·g-1 and maintained 78% of the initial capacity after 50 cycles at 0.1C rate. The two-step extraction/insertion behavior of Li+ in LiCoPO4/C …


Synthesis Of Pani/Nihcf Nanocomposite Particles And Eqcm Measurement Of Ion Exchange Properties In Solutions Containing Cd2+, Yu-Jiao Yang, Xiao-Gang Hao, Xu-Li Ma, Zhong-De Wang, Zhong-Lin Zhang, Nian-Chen Han Oct 2013

Synthesis Of Pani/Nihcf Nanocomposite Particles And Eqcm Measurement Of Ion Exchange Properties In Solutions Containing Cd2+, Yu-Jiao Yang, Xiao-Gang Hao, Xu-Li Ma, Zhong-De Wang, Zhong-Lin Zhang, Nian-Chen Han

Journal of Electrochemistry

The PANI/NiHCF nanocomposite particles were synthesized on the CNTs-modified Pt substrate by one-step co-polymerization using cyclic voltammetry. Electrochemical quartz crystal microbalance (EQCM) technique was adopted to investigate the polymerization process of the nanocomposite particles and the mechanism of ion exchange in aqueous solution containing Cd2+. The morphology and structure of the as-prepared composite particles were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FT-IR). Combined with cyclic voltammetry (CV) and energy dispersive spectroscopy (EDS), the electrochemical behavior and the mechanism of ion exchange were also investigated in electrolytes of Cd2+ …


Applications Of Spectroscopic Ellipsometry In Corrosion Investigation, Ling-Jie Li, Yu-Ling He, Jing-Lei Lei, Sheng Tao Zhang Oct 2013

Applications Of Spectroscopic Ellipsometry In Corrosion Investigation, Ling-Jie Li, Yu-Ling He, Jing-Lei Lei, Sheng Tao Zhang

Journal of Electrochemistry

As a highly-sensitive and non-destructive in situ technique, spectroscopic ellipsometry has been widely applied in corrosion investigation to acquire the dynamic information of the “electrode-medium” interface during corrosion. This paper lays out some representative demonstrations in several established optical models used to interpret data obtained with spectroscopic ellipsometry in corrosion investigation. In addition, the latest trends in development of this technique are analyzed.


Graphene Quantum Dots Enhanced Electrochemical Performance Of Polypyrrole As Supercapacitor Electrode, Kun Wu, Si-Zhe Xu, Xue-Jiao Zhou, Hai-Xia Wu Aug 2013

Graphene Quantum Dots Enhanced Electrochemical Performance Of Polypyrrole As Supercapacitor Electrode, Kun Wu, Si-Zhe Xu, Xue-Jiao Zhou, Hai-Xia Wu

Journal of Electrochemistry

With an objective to develop electrode materials with high specific capacitance and good stability, a completely new nanocomposite of Polypyrrole (PPY) and graphene quantum dots (GQD) was successfully obtained through in-situ polymerization of pyrrole in the presence of GQD suspension. The obtained composites with different mass ratios were characterized by X-Ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). GQD enhanced electrochemical performance of PPY and, as supercapacitor electrodes, the PPY/GQD composites with the mass ratio of PPY to GQD at 50:1 showed a competitive specific capacitance of 485 F·g-1 at a scan rate of …


Preparation And Methanol Electrooxidation Of Pt/Pmo12/Pedot/Gc Electrodes, Jing-Hua Ma, Rui-Xiang Wang, Yi-Liang Tan, Shan-Shan Wang, Yan-Qin Zhang, You-Jun Fan Apr 2013

Preparation And Methanol Electrooxidation Of Pt/Pmo12/Pedot/Gc Electrodes, Jing-Hua Ma, Rui-Xiang Wang, Yi-Liang Tan, Shan-Shan Wang, Yan-Qin Zhang, You-Jun Fan

Journal of Electrochemistry

Modification of phosphomolybdic acid (PMo12) on poly(3,4-ethylenedioxythiophene) (PEDOT) film (PEDOT/GC) obtained through the electrochemical polymerization was performed using adsorption method (PMo12/PEDOT/GC), followed by electrodepositing Pt on PMo12/PEDOT/GC to prepare Pt/PMo12/PEDOT/GC electrode. Effects of PMo12 and PEDOT on the methanol oxidation performance of electrode were investigated. Results showed that PMo12 obviously changed the morphology and structure of Pt loaded on the electrode, leading to the formation of sharp thorns at the edge of Pt nanostructures. Cyclic voltammetry and chronoamperometry data demonstrated that the catalytic activities of methanol electrooxidation on the Pt/PMo …


Electrochemical Synthesis Of Hierarchical Dendritic Polyaniline Nanostructures, Shao-Huang Weng, Jian-Zhang Zhou, Zhong-Hua Lin, Xin-Hua Lin Apr 2013

Electrochemical Synthesis Of Hierarchical Dendritic Polyaniline Nanostructures, Shao-Huang Weng, Jian-Zhang Zhou, Zhong-Hua Lin, Xin-Hua Lin

Journal of Electrochemistry

In this work, the p-TSA doped and hierarchical dendritic nanostructured polyanilines (PANI) have been prepared by potentiostatic electropolymerization without using any templates at room temperature. The mechanism of the polymerization has been discussed according to the electrodeposition curves. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to confirm the formation of uniform hierarchical dendritic structure on PANI. UV-Vis spectroscopy (UV-Vis) and infrared spectroscopy (FTIR) proved that the prepared PANI is in the form of emeraldine salt. The templateless electrodeposition method is simple, easy to operate, can be applied to fabricate other nanostructures of conducting polymers.


Synthesis And Electrocatalysis Of Pdcu Alloy Nanocrystals, Hai-Bin Wu, Rui-Zhong Zhang, Wei Chen Apr 2013

Synthesis And Electrocatalysis Of Pdcu Alloy Nanocrystals, Hai-Bin Wu, Rui-Zhong Zhang, Wei Chen

Journal of Electrochemistry

Monodispersed PdCu alloy nanoparticles were synthesized by co-reduction of Cu(acac)2 and Pd(acac)2 with 1, 2-hexadecanediol. The spherical and popcorn-like shapes of PdCu alloy nanoparticles were obtained by changing the ratios of mixed surface protecting ligands of 1-octadecene, and oleylamine or oleic acid. TEM and XRD measurements showed that both PdCu nanoparticles are alloy nanocrystals dominated with (111) planes and the average sizes are 12.7 ± 0.18 and 20.4 ± 0.31 nm for he spherical and popcorn-like PdCu nanoparticles, respectively. The electrocatalytic activities of the PdCu nanocrystals for formic acid oxidation were evaluated by electrochemical cyclic voltammetry (CV). The result showed …


Preparation And Catalytic Properties Of Feco Alloy Nanocatalyst, Ming-Xuan Li, Jie-Lian Ou, Sheng-Pei Chen, Peng Wang, Bin-Bin Xu, Shi-Gang Sun Apr 2013

Preparation And Catalytic Properties Of Feco Alloy Nanocatalyst, Ming-Xuan Li, Jie-Lian Ou, Sheng-Pei Chen, Peng Wang, Bin-Bin Xu, Shi-Gang Sun

Journal of Electrochemistry

The FeCo alloy nanoparticles were electrodeposited on glassy carbon electrode by chronoamperometry and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the shapes of FeCo nanoparticles were cubes with an average size of 65 nm. The atom ratio of Fe and Co is 1:1. As indicated from the pattern of selected area electron diffraction (SAED), the FeCo cubic nanoparticles were single crystal which belonged to body-centered cubic with an interval of 0.201 nm referring to the (110) facets of FeCo alloy. The FeCo cubic nanoparticles exhibited the enhanced electrocatalytic …


Electrochemical Activities Of Oxygen-Doped Carbon Surface For V(Iv)/V(V) Redox Couple, Huan Zhang, Lin-Lin Qin, Yi-Ning Shi, Ming-Sen Zheng, Quan-Feng Dong, Zhao-Wu Tian Apr 2013

Electrochemical Activities Of Oxygen-Doped Carbon Surface For V(Iv)/V(V) Redox Couple, Huan Zhang, Lin-Lin Qin, Yi-Ning Shi, Ming-Sen Zheng, Quan-Feng Dong, Zhao-Wu Tian

Journal of Electrochemistry

Graphite plate electrodes were treated with oxygen plasma and doped with oxygen as well as oxygen functional groups. With the treatment, the activities of graphite plate electrodes toward VO2+/VO2+ redox reactions were improved. FT-IR and EDS analysis results indicated that oxygen functional groups were introduced to the surface of graphite plates after oxygen plasma treatment. In this paper, the graphite plate treated for 20 min showed the highest activity. The average charge efficiency reached 91%, suggesting an increase of 19%, compared with that of the untreated graphite plate under a current density of 8 mA·cm-2 …


Current Development Of Quantum Dots Based Electrochemiluminescence Immunosensors, Ling-Ling Li, Qian Lu, Jun-Jie Zhu Apr 2013

Current Development Of Quantum Dots Based Electrochemiluminescence Immunosensors, Ling-Ling Li, Qian Lu, Jun-Jie Zhu

Journal of Electrochemistry

Electrochemiluminescence exhibits the merits of both luminescence and electrochemistry analysis, and has been extensively employed in biosensors. Quantum dots are considered one of the three main kinds of electrochemiluminescence luminophores due to their unique properties. This paper briefly reviews the classification and signal amplification technology of quantum dots based electrochemiluminescence immunosensors. Future research trends are also suggested.


Applications Of Ellipsometry In The Investigations Of Electrode-Solution Interface, Jing-Lei Lei, Liang-Liu Wu, Ling-Jie Li, Sheng-Mao Wu, Sheng-Tao Zhang Feb 2013

Applications Of Ellipsometry In The Investigations Of Electrode-Solution Interface, Jing-Lei Lei, Liang-Liu Wu, Ling-Jie Li, Sheng-Mao Wu, Sheng-Tao Zhang

Journal of Electrochemistry

Ellipsometry is an optical technique with high-sensitivity to quantitatively obtain surface/interface properties such as thickness andrefractive index by analyzing the changes in polarized light reflected from the surface/interface. Its noncontacting and nondestructivenature makes it possible to acquire thein situreal-time information of the change at the surface/interface. Therefore, ellipsometry has been used widely in the electrochemical investigations. In this paper, based on the brief introduction of the measurementprinciple of ellipsometry, the current progress and the future trends of ellipsometry in electrochemistry arediscussed. The applications of ellipsometry in the fields of conversion and storage of electrochemical energy, electrochemistry ofmaterials science,electroanalysisand bioelectrochemistry are …


An In Situ Ftir Spectroelectrochemical Study On Methanol Oxidation At Pt-Mo2c/Gc Catalyst, Hai-Ping Huang, Xi-Yu Yao, Pei-Kang Shen Feb 2013

An In Situ Ftir Spectroelectrochemical Study On Methanol Oxidation At Pt-Mo2c/Gc Catalyst, Hai-Ping Huang, Xi-Yu Yao, Pei-Kang Shen

Journal of Electrochemistry

A 40% Pt on Mo2C/GC catalyst has been prepared by ion exchange method. The mechanism of methanol electrooxidation on Pt-Mo2C/GC and commercial Pt/C catalysts in acidic media was studied by cyclic voltammetry, XRD measurements and in-situ Fourier transform infrared spectroelectrochemistry. The results revealed that the Pt nanoparticles were uniformly dispersed on Mo2C/GC with an average particle size of 3 nm. The cyclic voltammetric and chronopotentiometric experiments indicated that Pt-Mo2C/GC catalyst exhibited a better performance for methanol oxidation than that of Pt/C in acid solution. A negative shift over 90 mV of the onset potential for methanol oxidation was found on …


Sodium Carbonate Catalyzed Photoelectrochemical Water Splitting Over Tio2 Nanotubes Photoanode, De-Sheng Kong, Jing Wang, Xue-Di Zhang, Xi Zhao, Chao Wang, Yuan-Yuan Feng, Wen-Juan Li Feb 2013

Sodium Carbonate Catalyzed Photoelectrochemical Water Splitting Over Tio2 Nanotubes Photoanode, De-Sheng Kong, Jing Wang, Xue-Di Zhang, Xi Zhao, Chao Wang, Yuan-Yuan Feng, Wen-Juan Li

Journal of Electrochemistry

Surface recombination of the photogenerated electron-hole pairs at semiconductor/electrolyte interface is one of the most essential reasons responsible for lowering photoconversion efficiency (Φ) of light to chemical energy for photoelectrochemical (PEC) water splitting reaction. In this paper,the catalytic effect of sodium carbonate on the oxygen evolution reaction (OER) over TiO2 nanotubes photoanode during PEC water splitting was investigated by performing photocurrent and ac impedance measurements. It was demonstrated that the addiction of 1 mmol•L-1 Na2CO3 in 0.5 mol•L-1 NaClO4 electrolyte can effectively improve the charge transfer properties for the photogenerated holes …