Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Other Nanotechnology Publications

2010

Articles 1 - 1 of 1

Full-Text Articles in Nanoscience and Nanotechnology

Universality Of Non-Ohmic Shunt Leakage In Thin-Film Solar Cells, Sourabh Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, R. M. Gelfand, H. Mohseni, Hugh Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, Mark S. Lundstrom, Muhammad A. Alam Dec 2010

Universality Of Non-Ohmic Shunt Leakage In Thin-Film Solar Cells, Sourabh Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, R. M. Gelfand, H. Mohseni, Hugh Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, Mark S. Lundstrom, Muhammad A. Alam

Other Nanotechnology Publications

We compare the dark current-voltage (IV) characteristics of three different thin-film solar cell types: hydrogenated amorphous silicon (a-Si:H) p-i-n cells, organic bulk heterojunction (BHJ) cells, and Cu(In, Ga)Se-2 (CIGS) cells. All three device types exhibit a significant shunt leakage current at low forward bias (V < similar to 0.4) and reverse bias, which cannot be explained by the classical solar cell diode model. This parasitic shunt current exhibits non-Ohmic behavior, as opposed to the traditional constant shunt resistance model for photovoltaics. We show here that this shunt leakage (I-sh), across all three solar cell types considered, is characterized by the following common phenomenological features: (a) voltage symmetry about V = 0, (b) nonlinear (power law) voltage dependence, and (c) extremely weak temperature dependence. Based on this analysis, we provide a simple method of subtracting this shunt current component from the measured data and discuss its implications on dark IV parameter extraction. We propose a space charge limited (SCL) current model for capturing all these features of the shunt leakage in a consistent framework and discuss possible physical origin of the parasitic paths responsible for this shunt current mechanism. (C) 2010 American Institute of Physics. [doi:10.1063/1.3518509]